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Ordinal numbers
Cantor

Cantor at early 20th century.∗

Cantor defined ordinal numbers
by two principles of generation
and a first ordinal [Tiles 2004].

I 0 is the first ordinal
number.

I The successor of an ordinal
number is an ordinal
number.

I The limit of an infinite
increasing sequence of
ordinals is an ordinal
number.

∗Taken from Wikipedia.
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Ordinal numbers
Constructing Some Ordinals

Example

Let’s construct some ordinals using the previous rules.

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + ω = ω · 2,
ω · 2 + 1, ω · 2 + 2, . . . , ω · 3, . . . , ω · n, ω · n + 1, . . .

ω2, ω2 + 1, ω2 + 2, . . . , ω3, ω3 + 1, . . . , ωω, . . .

ωωω
, . . . , ωωωω

, . . . , ωωωωω

, . . . , ε0, . . .
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Ordinal numbers
von Neumann Ordinals

von Neumann [1928] defined ordinals by:

Definition
An ordinal is a set α that satisfies:

I For every y ∈ x ∈ α it occurs that y ∈ α. This is called a
transitive property.

I The set α is well-ordered by the membership relationship.

Remark
Observe that the definition is not recursive as Cantor’s.

4 / 14
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Ordinal numbers
Some von Neumann Ordinals

0 := ∅

1 := {0}
2 := {0, 1}

...

ω := {0, 1, 2, . . .}
ω + 1 := {0, 1, 2, . . . , ω}

...

It is important to see that it occurs that:

0 ∈ 1 ∈ 2 ∈ . . . ω ∈ ω + 1 ∈ . . .
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Ordinal numbers
Countable Ordinals

Definition
A countable ordinal is an ordinal whose cardinality is finite or
denumerable.

The first non-countable ordinal is defined as:

ω1 := Set of all countable ordinals

It is important to notice that the countable ordinals are the
ordinals of the first and second class of Cantor.
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Ordinal numbers
Hilbert Definition

Hilbert defined the natural and ordinal numbers using predicate
logic [Hilbert 1925].

Nat(0)
Nat(n)→ Nat(succ(n))
{P(0) ∧ ∀n[P(n)→ P(succ(n))]} → [Nat(n)→ P(n)]

On(0)
On(n)→ On(succ(n))
{∀n[Nat(n)→ On(f (n))]} → On(lim(f (n)))
{P(0) ∧ ∀n[P(n)→ P(succ(n))] ∧ ∀f ∀n[P(f (n))→ P(lim f )]]}

→ [On(n)→ P(n)]

where Nat and On are propositional functions representing both
numbers.
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Ordinal numbers
Computable Ordinals

Church and Kleene [1937] defined computable ordinals as ordinals
that are λ-definable.

Remark
The computable ordinals are less than the countable ones, as there
are less λ-terms than real numbers.

The first countable ordinal that is non-computable is called ωCK
1

∗.
Furthermore, all non-countable ordinals are non-computable.

∗See CK Wikipedia
8 / 14

https://en.wikipedia.org/wiki/Church%E2%80%93Kleene_ordinal
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Representations
Hardy

Hardy represented ordinals by sequences of natural numbers and
defined two operations [Hardy 1904].

• 0, 1, 2, ... → 0

• 1, 2, 3, ... → 1

• 2, 3, 4, ... → 2
...

• 0, 2, 4, 6 ... → ω

• 2, 4, 6, 8 ... → ω + 1

• 4, 6, 8, 10 ... → ω + 2
...

• 0, 4, 8, 12, ... → ω · 2
• 4, 8, 12, 16, ... → ω · 2 + 1

• 8, 12, 16, 20, ... → ω · 2 + 2

9 / 14
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Representations
Hardy

Here this representation can be written representing the sequences
of natural numbers as functions. In this manner, it is obtained that:

0x := x

1x := x + 1

2x := x + 2

...

ωx := 2x

(ω + 1)x := 2(x + 1)

(ω + 2)x := 2(x + 2)

...

(ω · n + k)x := 2n(x + k)

10 / 14
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Representations
Martin-Löf’s Representation

Martin-Löf’s represented ordinals in his type theory [Martin-Löf
1984].

zero : Nat

n : Nat

succ n : Nat

zeroo : On

n : On

succo n : On

f : Nat → On

lim f : On

11 / 14
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Representations
Martin-Löf’s Representation

Remark
Martin-Löf’s definition is analogous to Cantor and Hilbert’s
definition.

Question
Which ordinal cannot be constructed by Martin-Löf’s
representation?

Is it possible to define, similarly, a ωML
1 ?

12 / 14
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