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Ordinal numbers

Cantor

Cantor defined ordinal numbers
by two principles of generation
and a first ordinal [Tiles 2004].

» 0 is the first ordinal
number.

» The successor of an ordinal
number is an ordinal
number.

» The limit of an infinite

increasing sequence of
Cantor at early 20th century.* ordinals is an ordinal

number.

*Taken from Wikipedia.
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Ordinal numbers

von Neumann Ordinals

von Neumann [ | defined ordinals by:
Definition
An ordinal is a set « that satisfies:

> For every y € x € « it occurs that y € a. This is called a
transitive property.

> The set « is well-ordered by the membership relationship.
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Ordinal numbers

von Neumann Ordinals

von Neumann [ | defined ordinals by:
Definition
An ordinal is a set « that satisfies:

> For every y € x € « it occurs that y € a. This is called a
transitive property.

> The set « is well-ordered by the membership relationship.

Remark
Observe that the definition is not recursive as Cantor's.
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Some von Neumann Ordinals

w:={0,1,2,...}
w+1:={0,1,2,...,w}
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Ordinal numbers

Some von Neumann Ordinals

w:={0,1,2,...}
w+1:={0,1,2,...,w}

It is important to see that it occurs that:

Dele2e..wew+le...
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Definition
A countable ordinal is an ordinal whose cardinality is finite or
denumerable.
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Ordinal numbers
Countable Ordinals

Definition
A countable ordinal is an ordinal whose cardinality is finite or
denumerable.

The first non-countable ordinal is defined as:
w1 := Set of all countable ordinals

It is important to notice that the countable ordinals are the
ordinals of the first and second class of Cantor.
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logic [Hilbert ]
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Hilbert defined the natural and ordinal numbers using predicate
logic [Hilbert ]

Nat(0)
Nat(n) — Nat(succ(n))
{P(0) A¥n[P(n) — P(succ(n))]} — [Nat(n) — P(n)]

On(0)

On(n) — On(succ(n))

{V¥n[Nat(n) — On(f(n))]} — On(lim(f(n)))

{P(0) AVn[P(n) — P(succ(n))] AVFVn[P(f(n)) — P(lim f)]]}
— [On(n) — P(n)]

where Nat and On are propositional functions representing both

numbers.
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Ordinal numbers
Computable Ordinals

Church and Kleene [ | defined computable ordinals as ordinals
that are A-definable.

Remark

The computable ordinals are less than the countable ones, as there
are less A\-terms than real numbers.

The first countable ordinal that is non-computable is called w{K*.
Furthermore, all non-countable ordinals are non-computable.

*See
8/14
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Representations
Hardy

Hardy represented ordinals by sequences of natural numbers and
defined two operations [Hardy ]
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Representations
Hardy

Hardy represented ordinals by sequences of natural numbers and
defined two operations [Hardy ]

01,2 ...—0
1,23 ..—=>1
234 .. =2

0,2,46.. >w
2,4,6,8... >w+1
4,6,8 10... - w+2

0,428,12, ... 2 w-2
4,8, 12,16, ... »w-2+1
8,12,16, 20, ... > w-242
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Here this representation can be written representing the sequences
of natural numbers as functions. In this manner, it is obtained that:

0, :=x
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Representations
Hardy

Here this representation can be written representing the sequences
of natural numbers as functions. In this manner, it is obtained that:

0, :=x
1, =x+1
2y = x+2
Wy 1= 2x

(w+1)x : 2(x+1)
(w+2)x :=2(x+2)
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Representations
Hardy

Here this representation can be written representing the sequences
of natural numbers as functions. In this manner, it is obtained that:

Ox

=X
=x+1
=x+2

2(x+1)
=2(x+2)

: 2"(x + k)
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Representations

Martin-Lof's Representation

Martin-L6f's represented ordinals in his type theory [Martin-Lof
1984].
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Representations

Martin-Lof's Representation

Martin-L6f's represented ordinals in his type theory [Martin-Lof

]

n : Nat
zero : Nat succ n : Nat
n: On f : Nat — On
zero, @ On succe n : On lim f: On
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Martin-Lof's Representation

Remark
Martin-Lof's definition is analogous to Cantor and Hilbert's
definition.
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Representations

Martin-Lof's Representation

Remark
Martin-Lof's definition is analogous to Cantor and Hilbert's
definition.

Question
Which ordinal cannot be constructed by Martin-Lof's
representation?

Is it possible to define, similarly, a wML?
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