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Problem definition



Problem and definitions

• Formal proofs
• Formal verification
• Correctness
• Termination proofs
• Curry-Howard correspondence
• Ordinal numbers
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State of Art



Fundamental ideas

• Halting problem (Davis, 1958)
• Termination, (Turing, 1949) ”How can one check a routine in the
sense of making sure that it is right?”

• Basis for formal definitions of the meaning of programs (Floyd,
1967)

• Mapping the iterations of an algorithm to a corresponding set of
ordinal numbers (Nachum Dershowitz, 1979)

• Processes that transform trees or terms can often be proved
terminating by viewing the tree or the tree representation of the
tree as an ordinal. (Dershowitz, 1993)
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Definitions and theorems

Definition
A tree is an ordered set (T,≤) which has a least element and is such
that, for every x ∈ T, the set {y ∈ T | y < x} is well-ordered by ≤.
(Hrbacek and Jech, 1999)

Theorem
Every well-ordered set is isomorphic to a unique ordinal number.
(Hrbacek and Jech, 1999)
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Progress and challenges



A program for simplification of a formula

Consider the following system:

¬¬x⇒ x
¬(x ∨ y) ⇒ ¬x ∧ ¬y
¬(x ∧ y) ⇒ ¬x ∨ ¬y
x ∧ (y ∨ z) ⇒ (x ∧ y) ∨ (x ∧ z)
(y ∨ z) ∧ x⇒ (y ∧ x) ∨ (z ∧ x)

If we develop an algorithm for this system, how can we prove that it
terminates?

The procedure of applying the previous rules to a logical formula
produces a formula in disjunctive normal form.

Main challenge:
To find a function that maps the recursive calls of the algorithm that
are decreasing to a set of ordinal numbers or to find the tree
representation of the term as an ordinal. 5



Rewriting systems

• A rewrite (term-rewriting) system R over a set of terms T is a
(finite) set of rewrite rules, each of the form l -> r, where l and r
are terms containing variables ranging over T, and such that r
only contains variables also in l.

• Confluence is a property of rewriting systems, describing which
terms in such a system can be rewritten in more than one way.
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Termination of rewriting systems

• Termination is a property of rewrite systems. No infinite
derivations are possible.

• The difficulty that may be encountered when attempting to
determine if a rewrite systems terminates is related to the
non-deterministic choice of the rules of rewriting.

¬(x ∨ (y ∧ z)) ⇒ ... ⇒ ¬x ∧ ¬(y ∧ z)
¬(x ∨ (y ∧ z)) ⇒ ... ⇒ ¬((x ∨ y) ∧ (x ∨ z))

Question: How many recursive calls are necessary in order that the
given formula is in disjunctive normal form?
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