
Formal Proof for Termination of Programs
Using Ordinal Numbers

Andrés Felipe Tamayo-Arango and Andrés Sicard-Ramírez†a

aftamayo@eafit.edu.co, asr@eafit.edu.co

Mathematical Engineering, Universidad EAFIT
Mathematical Science Department, School of Sciences, Universidad EAFIT

aTutor



Table of contents

1. Problem definition

2. State of Art

3. Progress and challenges

1



Problem definition



Problem and definitions

• Formal proofs
• Formal verification
• Correctness
• Termination proofs
• Curry-Howard correspondence
• Ordinal numbers

2



State of Art



Fundamental ideas

• Halting problem (Davis, 1958)
• Termination, (Turing, 1949) ”How can one check a routine in the
sense of making sure that it is right?”

• Basis for formal definitions of the meaning of programs (Floyd,
1967)

• Mapping the iterations of an algorithm to a corresponding set of
ordinal numbers (Nachum Dershowitz, 1979)

• Processes that transform trees or terms can often be proved
terminating by viewing the tree or the tree representation of the
tree as an ordinal. (Dershowitz, 1993)

3



Definitions and theorems

Definition
A tree is an ordered set (T,≤) which has a least element and is such
that, for every x ∈ T, the set {y ∈ T | y < x} is well-ordered by ≤.
(Hrbacek and Jech, 1999)

Theorem
Every well-ordered set is isomorphic to a unique ordinal number.
(Hrbacek and Jech, 1999)

4



Progress and challenges



A program for simplification of a formula

Consider the following system:

¬¬x⇒ x
¬(x ∨ y) ⇒ ¬x ∧ ¬y
¬(x ∧ y) ⇒ ¬x ∨ ¬y
x ∧ (y ∨ z) ⇒ (x ∧ y) ∨ (x ∧ z)
(y ∨ z) ∧ x⇒ (y ∧ x) ∨ (z ∧ x)

If we develop an algorithm for this system, how can we prove that it
terminates?

The procedure of applying the previous rules to a logical formula
produces a formula in disjunctive normal form.

Main challenge:
To find a function that maps the recursive calls of the algorithm that
are decreasing to a set of ordinal numbers or to find the tree
representation of the term as an ordinal. 5



Rewriting systems

• A rewrite (term-rewriting) system R over a set of terms T is a
(finite) set of rewrite rules, each of the form l -> r, where l and r
are terms containing variables ranging over T, and such that r
only contains variables also in l.

• Confluence is a property of rewriting systems, describing which
terms in such a system can be rewritten in more than one way.

6



Termination of rewriting systems

• Termination is a property of rewrite systems. No infinite
derivations are possible.

• The difficulty that may be encountered when attempting to
determine if a rewrite systems terminates is related to the
non-deterministic choice of the rules of rewriting.

¬(x ∨ (y ∧ z)) ⇒ ... ⇒ ¬x ∧ ¬(y ∧ z)
¬(x ∨ (y ∧ z)) ⇒ ... ⇒ ¬((x ∨ y) ∧ (x ∨ z))

Question: How many recursive calls are necessary in order that the
given formula is in disjunctive normal form?

7



References

Martin Davis. Computability and Unsolvability. McGraw-Hill, 1958.
Nachum Dershowitz. Trees, ordinals and termination. Springer,
Berlin, Heidelberg, 1993.

Robert W. Floyd. Assigning meanings to programs. Mathematical
Aspects of Computer Science, 1967.

Karel Hrbacek and Thomas Jech. Introduction to Set Theory. Third
Edition, Revised and Expanded. Marcel Dekker, 1999.

Zohar Manna Nachum Dershowitz. Proving termination with multiset
orderings. Communications of the ACM, 1979.

Alan M. Turing. Checking a large routine. Report of a Conference on
High Speed Automatic Calculating, 1949.

8


	Problem definition
	State of Art
	Progress and challenges
	References

