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Introduction

Brief history [Sgrensen and Urzyczyn, 2006]
Russell’s type theory (1903).
Simply typed lambda-calculus by Church (1940).
Curry-Howard correspondence (1934-1969).
Martin Lof’s intuitionistic type theory (1971).
Girard’s paradox (1972).
Barendregt’s A-cube (1991).
Pure Type Systems by Barendregt (1992).
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Simply type theory

We start with two infinite sets B and V.
Types: T:=B|T—>T.
Terms: A:=V|AA|AV:T.A.
Application: if M : 0 — tand N : o, then MN : 7.
Abstraction: if P : ,then Ax: o.P : 00 — 1.
B-reduction

(Ax : o.M)N —g M[x := N]
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Typing a la Church: we have terms with type information in the
A-abstraction. Terms have unique types.

Typing a la Curry: we assign types to untyped A-terms. Terms
do not have unique types.
Examples:
Axtady: (B — a) > a.y(dz: B.x)
has only a type:
a—-(B-a)—a)—>«a
Ax.Ay.y(Az.x)
can be given the types

a—((B—-a)—a—a,
(@—>a)>(Boa—-a)—oy) >y,
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Formulas-as-Type

There are three readings of a judgement a : A [Palmgren, 2013].

A set a: A

A is a set @ is an element of the set A | A is non-empty (or in-
habited)

A is a proposi- | @ is a proof (construction) of | A is true

tion the proposition A

A is a problem | a is a method of solving the | A is solvable

(task) problem (doing the task) A
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Pure type systems

A pure type system [Sgrensen and Urzyczyn, 2006] (PTS) is
determined by a triple (S, A, R) with:

S the set of sorts.
A C S XS the set of axioms.
R C S xS xS the set of rules.

If s, = s3, arule (s, 52, 53) is abbreviated (sq, 52).
Pseudoterms:

T:=S | Var | ITVar:T.T) | (1 Var:T.T) | TT.

where Var is a infinite set of variables.

We have the following derivation rules:
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Derivation rules for a PTS

(Ax)

(Var)

(Prod)

(Abs)

(App)

(Weak)

(Conv)

Iz:Abz:

@ & s1:83, when (s1,83)€A

' A:s r
1 (z & dom(I))

T'FA:s Iz:AF B:sy
I'l (Tlz:A.B) : g3

((s1,52,83) €R)

I'z:A+B:C TF(Iz:AC):s
TH(Az:A.B): (Iz: A.C)

Tk A:(Ilz:B.C) 'D:B
T+ (AD):Clz := D]

THA:B '-C:s
Iz:CHA:B

(z ¢ dom(T))

'FA:B I'FB':s
THA:B
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systems

System AHOL

System AHOL is the PTS with sorts {*,0, A}, axioms * : Dand O : A,
and rules {(x, %), (O, *), (O, O)}.

In AHOL it is possible to code the minimal intuitionistic predicate
logic, which only has implication and universal quantification as
logical operations [Nederpelt and Geuvers, 2014].

We code the implication A = B as the function type A — B, where
A — B:=Ilx : A.B if x does not occur free in B.
We code the universal quantification YV cx(P(x)) as the type I1x : S.Px.

Furthermore, in AHOL it is possible to code the intuitionistic logic,
even the high order intuitionisticc logic[Barendregt et al., 2013].
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Definability of logical connectives

1:=Tla: *a

oAt =llax.(c>1T>a) —«a
ovVt=Illax.(c > a) > (T-oa) —a
A:=T8«.(Ilax.c - B) >

Let A be a type, we define the Leibniz equality:

a=4b:=1IP: A — %.(Pa) — (Pb) [Nederpelt and Geuvers, 2014].
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Pure type systems

The systems AU, AU

System AU is a PTS with sorts {*, 0, A}, axioms * : Dand O : A,
and rules {(x, %), (3, %)}, (O, O), (A, %), (A, O)}.

System AU~ is the fragment of the system AU without rule (A,*).

In AU~ we obtain higher order logic over polymorphic domains.

AU allows quantification over all types.
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A PTS AS is called inconsistent if there exists a term M such that
Fis M : L [Geuvers, 1993].

Theorem 1 (Girard’s Paradox)

Systems AU y AU~ are inconsistent.

AU can’t be used as a logic.
Every type in AU~ and AU is inhabited.

There exists a term in AU~ without normal form.

Corolario 1.1 (“Type is not a type)

A IS inconsistent.
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Proof of Girard’s paradox (sketch)

1. Consider a paradox in naive set theory

The colection of all ordinal numbers is not a set. (Burali-Forti’s
Paradox) [Hurkens, 1995].
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Proof of Girard’s paradox (sketch)

2. Abstract version of the paradox

LetUd beaset,o: U - PU and 7 : PPU — U such that for each X
in U, otX = {tox|x is a element of X} [Hurkens, 1995].

Let ~ be the least equivalence relation on U/ such that for each x in U,
x ~ tox. Define € a relaction on U/ defined as follows

y € xif and only if y = z for some z in ox.

Let A := 7{x|[x ¢ x}. Then foreach yinl/,y € Aifand only if y ¢ y.
Take y = A[Hurkens, 1995].
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Proof of Girard’s paradox (sketch)

3. Formalizing

In AHOL, can be formalized the preceding derivation of a
contradiction in the context

U: o,

o:U - PU,with PU :=U — *,

T: U - U,

P:(IX : PU.(0(tX)) =gy Au - U.Tx : U((XX) A u =y (T(0x))),
where =4 is the Leibniz equality.
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Proof of Girard’s paradox (sketch)

4. The paradox in AU~

Define U, oy T en AU~ such that P is inhabited.
Hence, we obtain a term with type L.
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