Girard's Paradox

Daniela Cartagena Cartagena

Tutor: Juan Carlos Agudelo Agudelo Universidad de Antioquia 2019

Introduction

Brief history [Sørensen and Urzyczyn, 2006]

- Russell's type theory (1903).
- Simply typed lambda-calculus by Church (1940).
- Curry-Howard correspondence (1934-1969).
- Martin Löf's intuitionistic type theory (1971).
- Girard's paradox (1972).
- Barendregt's λ -cube (1991).
- Pure Type Systems by Barendregt (1992).

Simply type theory

We start with two infinite sets **B** and V.

- Types: $T:=B|T\rightarrow T$.
- Terms: $\Lambda := V |\Lambda \Lambda| \lambda V : T . \Lambda$.
- Application: if $M : \sigma \to \tau$ and $N : \sigma$, then $MN : \tau$.
- Abstraction: if $P: \tau$, then $\lambda x: \sigma P: \sigma \to \tau$.

β -reduction

$$(\lambda x : \sigma.M)N \to_{\beta} M[x := N]$$

- Typing à la Church: we have terms with type information in the λ-abstraction. Terms have unique types.
- Typing à la Curry: we assign types to untyped λ -terms. Terms do not have unique types.

Examples:

•
$$\lambda x : \alpha . \lambda y : (\beta \to \alpha) \to \alpha . y(\lambda z : \beta . x)$$

has only a type:

$$\alpha \to ((\beta \to \alpha) \to \alpha) \to \alpha$$

$$\lambda x. \lambda y. y(\lambda z. x)$$

can be given the types

$$\alpha \to ((\beta \to \alpha) \to \alpha) \to \alpha,$$

$$(\alpha \to \alpha) \to ((\beta \to \alpha \to \alpha) \to \gamma) \to \gamma,$$

...

Formulas-as-Type

There are three readings of a judgement a:A [Palmgren, 2013].

A set	a:A	
A is a set	a is an element of the set A	A is non-empty (or in- habited)
A is a proposition	a is a proof (construction) of the proposition A	A is true
A is a problem (task)	a is a method of solving the problem (doing the task) A	A is solvable

Pure type systems

A pure type system [Sørensen and Urzyczyn, 2006] (PTS) is determined by a triple (S, A, R) with:

- S the set of *sorts*.
- \bigcirc $A \subseteq S \times S$ the set of axioms.
- 3 $R \subseteq S \times S \times S$ the set of *rules*.

If $s_2 = s_3$, a rule (s_1, s_2, s_3) is abbreviated (s_1, s_2) .

Pseudoterms:

$$T:=S \mid Var \mid (\Pi Var:T.T) \mid (\lambda Var:T.T) \mid TT.$$

where Var is a infinite set of variables.

We have the following derivation rules:

Derivation rules for a PTS

$$(Ax) \qquad \varnothing \vdash s_{1}:s_{2}, \text{ when } (s_{1},s_{2}) \in \mathcal{A}$$

$$(Var) \qquad \frac{\Gamma \vdash A:s}{\Gamma, x:A \vdash x:A} \quad (x \not\in \text{dom}(\Gamma))$$

$$(Prod) \qquad \frac{\Gamma \vdash A:s_{1} \quad \Gamma, x:A \vdash B:s_{2}}{\Gamma \vdash (\Pi x:A.B):s_{3}} \quad ((s_{1},s_{2},s_{3}) \in \mathcal{R})$$

$$(Abs) \qquad \frac{\Gamma, x:A \vdash B:C \quad \Gamma \vdash (\Pi x:A.C):s}{\Gamma \vdash (\lambda x:A.B):(\Pi x:A.C)}$$

$$(App) \qquad \frac{\Gamma \vdash A:(\Pi x:B.C) \quad \Gamma \vdash D:B}{\Gamma \vdash (AD):C[x:=D]}$$

$$(Weak) \qquad \frac{\Gamma \vdash A:B \quad \Gamma \vdash C:s}{\Gamma, x:C \vdash A:B} \quad (x \not\in \text{dom}(\Gamma))$$

$$(Conv) \qquad \frac{\Gamma \vdash A:B \quad \Gamma \vdash B':s}{\Gamma \vdash A:B'} \quad (B = \beta B')$$

System *∂*HOL

System λ HOL is the PTS with sorts $\{*, \square, \triangle\}$, axioms $*: \square$ and $\square: \triangle$, and rules $\{(*, *), (\square, *), (\square, \square)\}$.

In λ HOL it is possible to code the minimal intuitionistic predicate logic, which only has implication and universal quantification as logical operations [Nederpelt and Geuvers, 2014].

We code the implication $A \Rightarrow B$ as the function type $A \rightarrow B$, where $A \rightarrow B := \Pi x : A.B$ if x does not occur free in B.

We code the universal quantification $\forall_{x \in X}(P(x))$ as the type $\Pi x : S.Px$.

Furthermore, in λ HOL it is possible to code the intuitionistic logic, even the high order intuitionistic logic[Barendregt et al., 2013].

Definability of logical connectives

$$\bot := \Pi\alpha : *.\alpha$$

$$\sigma \land \tau := \Pi\alpha * .(\sigma \to \tau \to \alpha) \to \alpha$$

$$\sigma \lor \tau := \Pi\alpha * .(\sigma \to \alpha) \to (\tau \to \alpha) \to \alpha$$

$$\exists := \Pi\beta * .(\Pi\alpha * .\sigma \to \beta) \to \beta$$
Let *A* be a type, we define the Leibniz equality:
$$a =_A b := \Pi P : A \to *.(Pa) \to (Pb) \text{ [Nederpelt and Geuvers, 2014]}.$$

The systems λU^- , λU

- ① System λU is a PTS with sorts $\{*, \Box, \Delta\}$, axioms $*: \Box$ and $\Box: \Delta$, and rules $\{(*, *), (\Box, *)\}, (\Box, \Box), (\Delta, *), (\Delta, \Box)\}.$
- ② System λU^- is the fragment of the system λU without rule $(\triangle,*)$.

In λU^- we obtain higher order logic over polymorphic domains.

 λU allows quantification over all types.

A PTS λ S is called inconsistent if there exists a term M such that $\vdash_{\lambda S} M : \bot$ [Geuvers, 1993].

Theorem 1 (Girard's Paradox)

Systems $\lambda U y \lambda U^-$ are inconsistent.

- \bigcirc λU can't be used as a logic.
- ② Every type in λU^- and λU is inhabited.
- 3 There exists a term in λU^- without normal form.

Corolario 1.1 ("Type is not a type)

 $\lambda *$ is inconsistent.

1. Consider a paradox in naive set theory

The collection of all ordinal numbers is not a set. (Burali-Forti's Paradox) [Hurkens, 1995].

2. Abstract version of the paradox

Let \mathcal{U} be a set, $\sigma : \mathcal{U} \to \mathcal{P}\mathcal{U}$ and $\tau : \mathcal{P}\mathcal{U} \to \mathcal{U}$ such that for each X in $\mathcal{P}\mathcal{U}$, $\sigma\tau X = \{\tau\sigma x | x \text{ is a element of } X\}$ [Hurkens, 1995]. Let \approx be the least equivalence relation on \mathcal{U} such that for each x in \mathcal{U} , $x \approx \tau\sigma x$. Define \in a relaction on \mathcal{U} defined as follows

 $y \in x$ if and only if $y \approx z$ for some z in σx .

Let $\Delta := \tau\{x | x \notin x\}$. Then for each y in \mathcal{U} , $y \in \Delta$ if and only if $y \notin y$. Take $y = \Delta$ [Hurkens, 1995].

3. Formalizing

In λ HOL, can be formalized the preceding derivation of a contradiction in the context

 $\mathcal{U}:\Box$,

 $\sigma: \mathcal{U} \to \mathscr{P}\mathcal{U}$, with $\mathscr{P}\mathcal{U} := \mathcal{U} \to *$.

 $\tau: \mathscr{P}\mathcal{U} \to \mathcal{U}$.

 $P: (\Pi X: \mathcal{P}U.(\sigma(\tau X)) = \mathcal{P}U \lambda u: U.\exists x: U.((Xx) \wedge u =_{\mathcal{U}} (\tau(\sigma x))),$ where $=_A$ is the Leibniz equality.

14/17

4. The paradox in λU^-

Define \mathcal{U} , σ y τ en λU^- such that P is inhabited. Hence, we obtain a term with type \perp .

Barendregt, H., Dekkers, W., and Statman, R. (2013).

Lambda calculus with types.

Cambridge: Cambridge University Press; Ithaca, NY: Association of Symbolic Logic (ASL).

Geuvers, J. H. (1993).

Logic and Type Systems.

PhD thesis, University of Nljmegen.

Hurkens, A. J. C. (1995).

A simplification of Girard's paradox.

In *Typed lambda calculi and applications*, pages 266–278. Berlin: Springer-Verlag.

Nederpelt, R. and Geuvers, H. (2014).

Type theory and formal proof. An introduction.

Cambridge: Cambridge University Press.

Palmgren, E. (2013). Lecture notes in type theory.

Sørensen, M. H. and Urzyczyn, P. (2006). Lectures on the Curry-Howard isomorphism., volume 149. Amsterdam: Elsevier.