CLEAN — UNIQUENESS TYPING

Jose-Ignacio Serna
May 19t 2014

Contents

Clean
- Language
- Features
- Sparkle
- Platform

Contents

Clean
- Language
- Features
- Sparkle
- Platform

Uniqueness Typing
- Intuition
- Definition

Contents

Clean
- Language
- Features
- Sparkle
- Platform

Uniqueness Typing
- Intuition
- Definition
Why?
- Efficient Space Management
- Interfacing with Non-functional Operations

Clean Language

Clean is a practical applicable general-purpose lazy pure functional
programming language suited for the development of reald world

applications.!

Haskell Clean Remarks
(a->b)->[a] -> [b] (a->Db) [a] -> [b] higher-order function
f.g fog function composition
-5 ~5 unary minus

[X | x <-[1..10] , isOdd x]

[X\ x <- [1..10] | isOdd x]

list comprehension

X XS

[X:xS]

cons operator

http://en.wikipedia.org/wiki/Clean_(programming_language)

1. Rinus Plasmeijer, Marko van Eekelen, John van Groningen [2011]. Language report Version 2.2.

Features

- Strictness analyzer

[1,3..9] // a lazy list

(1 1,3..9] // a head strict list

1 1,3..9 1] // a strict list (head and spine)

1,3..9] // a head strict list, unboxed

1,3..9 1] // a strict list (head and spine), unboxed
| 1,3..9 1 // an overloaded list

Features

- Strictness analyzer

[1,3..9] // a lazy list

(1 1,3..9] // a head strict list

1 1,3..9 1] // a strict list (head and spine)

1,3..9] // a head strict list, unboxed

1,3..9 1] // a strict list (head and spine), unboxed
| 1,3..9 1 // an overloaded list

- Generic programming

Features

- Strictness analyzer

[1,3..9] // a lazy list

(1 1,3..9] // a head strict list

1 1,3..9 1] // a strict list (head and spine)

1,3..9] // a head strict list, unboxed

1,3..9 1] // a strict list (head and spine), unboxed
| 1,3..9 1 // an overloaded list

- Generic programming
- 1/O library

Features

- Strictness analyzer

[1,3..9] // a lazy list

(1 1,3..9] // a head strict list

1 1,3..9 1] // a strict list (head and spine)

1,3..9] // a head strict list, unboxed

1,3..9 1] // a strict list (head and spine), unboxed
| 1,3..9 1 // an overloaded list

- Generic programming
- 1/O library
- Dynamics

Sparkle

- Proof assistant written and specialized in Clean that uses tactics
and a hint mechanism

Sparkle

- Proof assistant written and specialized in Clean that uses tactics
and a hint mechanism

- Makes use of a subset of the language: Core-Clean

Sparkle

- Proof assistant written and specialized in Clean that uses tactics
and a hint mechanism

- Makes use of a subset of the language: Core-Clean

- No support for pattern matching. Patterns have to be transformed to
case distinctions

Sparkle

- Proof assistant written and specialized in Clean that uses tactics
and a hint mechanism

- Makes use of a subset of the language: Core-Clean

- No support for pattern matching. Patterns have to be transformed to
case distinctions

- 42 tactics, each is assigned a score between 1 and 100

Sparkle

Proof assistant written and specialized in Clean that uses tactics
and a hint mechanism

Makes use of a subset of the language: Core-Clean

No support for pattern matching. Patterns have to be transformed to
case distinctions

42 tactics, each is assigned a score between 1 and 100

Absurd Exact Reflexive
AbsurdEquality Generalize Rewrite
Apply Induction Split
Assume Injective Symmetric
Case Introduce Transitive
ChooseCase MoveQuantors Undo

Compare Reduce

Clean Platform

[Cleanide
Fle Edt Seach Pioect Mockle Defauls

s\ 8| alal aje

d AWINDOWS\Desktop\Clean 1.3.2\0bjec
1:1-‘:}"("StdEnv' mple
=
é:‘/, A 2002000 D0 D00 DA D00 D020 020 D0 D0 D00 00 D00 0 K K
j 1558 e L1feGame program.
= 6/
E;;{Appllcatlon}\ObjectID\Objed'c' The program has been written in Clean 1.3.2 and
elp
- {ApplicationStdEnyv R A

ﬁ.ﬂdm

=

5| List of tactics (1)

Showing: all tactics(42)
named: *

Contradicti

Definedness

T s

awitch to selected iat
st iter | settits |

Unigueness Typing: Intuition

“The type of a value is given a ‘unique’ attribute if that value is used at
most once. On such ‘unique’ values update operations may be safely
implemented in-place since their unigueness guarantees that their
value is no longer required by the program.” 2

2. Dana G. Harrington [2001]. A type system for destructive updates in declarative programming
languages.

Unigueness Typing: Definition

A uniqgueness type is a pair S = (0,A), where o Is a
conventional type and A is a unigueness attribute. The
underlying conventional type o is denoted |S|. (Also a more
convenient notation is using superscripts).

Unigueness Typing: Definition

A uniqgueness type is a pair S = (0,A), where o Is a
conventional type and A is a unigueness attribute. The
underlying conventional type o is denoted |S|. (Also a more
convenient notation is using superscripts).

a’ — b”, [v <w]

Unigueness Typing: Definition
A uniqgueness type is a pair S = (0,A), where o Is a
conventional type and A is a unigueness attribute. The

underlying conventional type o is denoted |S|. (Also a more
convenient notation is using superscripts).

a’ — b”, [v <w]

fwritec :: Char *File -> *File

. N
Why?

Adding uniqueness information provides a solution to two
problems in implementations of functional languages.3

3. Erik Barendsen and Sjaak Smesters [1993]. Conventional and Uniqueness Typing in Graph Rewrite
Systems.

. N
Why?

Adding uniqueness information provides a solution to two
problems in implementations of functional languages.3

- Efficient space management

3. Erik Barendsen and Sjaak Smesters [1993]. Conventional and Uniqueness Typing in Graph Rewrite
Systems.

. N
Why?

Adding uniqueness information provides a solution to two
problems in implementations of functional languages.3

- Efficient space management

- Interfacing with non functional operations

3. Erik Barendsen and Sjaak Smesters [1993]. Conventional and Uniqueness Typing in Graph Rewrite
Systems.

Efficient Space Management

- Memory cells of m could be reused
let

1 =1[1..10]

m = map (*2) 1
in

m

Efficient Space Management

- Memory cells of m could be reused

let

1 =1[1..10]

m = map (*2) 1
in

m

- Memory cells of m can not be reused

let
1l =1T11..10]
m=map (*2) 1
in

(1,m)

Interfacing with Non-functional Operations

Il C example

int foo(FILE *file) {
int a = fgetc(file); // Read a character from ’file’
int b = fgetc(file);
return a + b;

}

Interfacing with Non-functional Operations

I/l Clean example
fgetc :: *File » (Char, *File)

foo :: *File » (Char, *File)
foo fileo = let (a, filel) = fgetc file®
(b, file2) = fgetc filel
in (a + b, file2)

