
CLEAN – UNIQUENESS TYPING

José-Ignacio Serna

May 19th 2014

Contents

Clean

• Language

• Features

• Sparkle

• Platform

2

Contents

Clean

• Language

• Features

• Sparkle

• Platform

Uniqueness Typing

• Intuition

• Definition

2

Contents

Clean

• Language

• Features

• Sparkle

• Platform

Uniqueness Typing

• Intuition

• Definition

Why?

• Efficient Space Management

• Interfacing with Non-functional Operations

2

Clean Language

Clean is a practical applicable general-purpose lazy pure functional

programming language suited for the development of reald world

applications.
1

1. Rinus Plasmeijer, Marko van Eekelen, John van Groningen [2011]. Language report Version 2.2.

Haskell Clean Remarks

(a -> b) -> [a] -> [b] (a -> b) [a] -> [b] higher-order function

f . g f o g function composition

-5 ~5 unary minus

[x | x <- [1..10] , isOdd x] [x \\ x <- [1..10] | isOdd x] list comprehension

x:xs [x:xs] cons operator

http://en.wikipedia.org/wiki/Clean_(programming_language)

3

Features

• Strictness analyzer

[1,3..9] // a lazy list

[! 1,3..9] // a head strict list

[! 1,3..9 !] // a strict list (head and spine)

[# 1,3..9] // a head strict list, unboxed

[# 1,3..9 !] // a strict list (head and spine), unboxed

[| 1,3..9] // an overloaded list

4

Features

4

• Strictness analyzer

[1,3..9] // a lazy list

[! 1,3..9] // a head strict list

[! 1,3..9 !] // a strict list (head and spine)

[# 1,3..9] // a head strict list, unboxed

[# 1,3..9 !] // a strict list (head and spine), unboxed

[| 1,3..9] // an overloaded list

• Generic programming

Features

4

• Strictness analyzer

[1,3..9] // a lazy list

[! 1,3..9] // a head strict list

[! 1,3..9 !] // a strict list (head and spine)

[# 1,3..9] // a head strict list, unboxed

[# 1,3..9 !] // a strict list (head and spine), unboxed

[| 1,3..9] // an overloaded list

• Generic programming

• I/O library

Features

4

• Strictness analyzer

[1,3..9] // a lazy list

[! 1,3..9] // a head strict list

[! 1,3..9 !] // a strict list (head and spine)

[# 1,3..9] // a head strict list, unboxed

[# 1,3..9 !] // a strict list (head and spine), unboxed

[| 1,3..9] // an overloaded list

• Generic programming

• I/O library

• Dynamics

Sparkle

• Proof assistant written and specialized in Clean that uses tactics
and a hint mechanism

5

Sparkle

• Proof assistant written and specialized in Clean that uses tactics
and a hint mechanism

• Makes use of a subset of the language: Core-Clean

5

Sparkle

• Proof assistant written and specialized in Clean that uses tactics
and a hint mechanism

• Makes use of a subset of the language: Core-Clean

• No support for pattern matching. Patterns have to be transformed to
case distinctions

5

Sparkle

• Proof assistant written and specialized in Clean that uses tactics
and a hint mechanism

• Makes use of a subset of the language: Core-Clean

• No support for pattern matching. Patterns have to be transformed to
case distinctions

• 42 tactics, each is assigned a score between 1 and 100

5

Sparkle

• Proof assistant written and specialized in Clean that uses tactics
and a hint mechanism

• Makes use of a subset of the language: Core-Clean

• No support for pattern matching. Patterns have to be transformed to
case distinctions

• 42 tactics, each is assigned a score between 1 and 100

• Absurd

• AbsurdEquality

• Apply

• Assume

• Case

• ChooseCase

• Compare

• Exact

• Generalize

• Induction

• Injective

• Introduce

• MoveQuantors

• Reduce

• Reflexive

• Rewrite

• Split

• Symmetric

• Transitive

• Undo

• …

5

Clean Platform

6

Uniqueness Typing: Intuition

“The type of a value is given a ‘unique’ attribute if that value is used at

most once. On such ‘unique’ values update operations may be safely

implemented in-place since their uniqueness guarantees that their

value is no longer required by the program.” 2

2. Dana G. Harrington [2001]. A type system for destructive updates in declarative programming

languages.

7

Uniqueness Typing: Definition

A uniqueness type is a pair Ꮪ = 〈σ,Ꭺ〉, where σ is a

conventional type and Ꭺ is a uniqueness attribute. The

underlying conventional type σ is denoted |Ꮪ|. (Also a more

convenient notation is using superscripts).

8

Uniqueness Typing: Definition

A uniqueness type is a pair Ꮪ = 〈σ,Ꭺ〉, where σ is a

conventional type and Ꭺ is a uniqueness attribute. The

underlying conventional type σ is denoted |Ꮪ|. (Also a more

convenient notation is using superscripts).

av → bw, [v < w]

8

Uniqueness Typing: Definition

A uniqueness type is a pair Ꮪ = 〈σ,Ꭺ〉, where σ is a

conventional type and Ꭺ is a uniqueness attribute. The

underlying conventional type σ is denoted |Ꮪ|. (Also a more

convenient notation is using superscripts).

av → bw, [v < w]

fwritec :: Char *File -> *File

8

Why?

Adding uniqueness information provides a solution to two

problems in implementations of functional languages.3

3. Erik Barendsen and Sjaak Smesters [1993]. Conventional and Uniqueness Typing in Graph Rewrite

Systems.

9

Why?

Adding uniqueness information provides a solution to two

problems in implementations of functional languages.3

• Efficient space management

3. Erik Barendsen and Sjaak Smesters [1993]. Conventional and Uniqueness Typing in Graph Rewrite

Systems.

9

Why?

Adding uniqueness information provides a solution to two

problems in implementations of functional languages.3

• Efficient space management

• Interfacing with non functional operations

3. Erik Barendsen and Sjaak Smesters [1993]. Conventional and Uniqueness Typing in Graph Rewrite

Systems.

9

Efficient Space Management

• Memory cells of m could be reused

let

 l = [1..10]
 m = map (*2) l

in
 m

10

Efficient Space Management

• Memory cells of m could be reused

let

 l = [1..10]
 m = map (*2) l

in
 m

• Memory cells of m can not be reused

let

 l = [1..10]

 m = map (*2) l
in

 (l,m)

10

Interfacing with Non-functional Operations

// C example

int foo(FILE *file) {

 int a = fgetc(file); // Read a character from ’file’

 int b = fgetc(file);

 return a + b;

}

11

Interfacing with Non-functional Operations

// Clean example

fgetc :: *File → (Char, *File)

foo :: *File → (Char, *File)

foo file0 = let (a, file1) = fgetc file0

 (b, file2) = fgetc file1

 in (a + b, file2)

11

