Type Classes in CoQ

Elisabet Lobo-Vesga

EAFIT University

28th April, 2014

14

What is CoqQ? !

CoQ is a proof assistant developed in France since 1989. It is based
on an formal language called Calculus of Inductive Constructions
(CIC). Coq allows to:

» Define functions or predicates

» State mathematical theorems

> Interactively develop formal proofs of these theorems

» Check these proofs

» Extract certified programs to languages like OCaml or Haskell

> Use a tactic language for letting the user define its own proof
methods

1Coq website http://coq.inria.fr/what-is-coq

2/14

http://coq.inria.fr/what-is-coq

The CoqQ bundle!

> Arithmetics in N, Z and Q

» Libraries about list, finite sets, finite maps, etc.
» coqtop: interactive mode

» cogqide: graphical user interface

» coqdoc and cog-tex: documentation tools

» coqc : the compiler (batch compilation)

» coqchk: stand-alone proof verifier (validation of compiled
libraries)

Introduction to CoQ 2

Declarations

A declaration associates a name with a specification.

» Name: identifier

» Specification: formal expression as logical propositions (Prop),
mathematical collections (Set) and abstract types (Type)

name

0
nat
Set
Prop
>
list

»sort

nat

Set

Type

Type

nat — nat — Prop
Type — Type

2Huet, G., Kahn, G. and Paulin-Mohring, C. (2007). The Coq Proof
Assistant. A Tutorial.

14

Introduction to CoQ 2

Definitions

Inductive nat : Set :=
| @ : nat
| S : nat -> nat.

Definition one
Definition two : nat
Definition double (m:nat)

(S 0).
S one.
plus m m.

5/14

Introduction to CoQ 2

Proofs

Variables A B C : Prop.

Lemma lem :
(A ->B ->C) -> (A ->B) ->A ->C.

Proof.

intro H.
intros H' HA.
apply H.
exact HA.
apply H'.
assumption.

Qed.

6/14

HASKELL Type Classes

Definition

“Typeclasses define a set of functions that can have different imple-
mentations depending on the type of data they are given.” 3

30'Sullivan, B., Goerzen, J. and Stewart, D. (2008). Real World Haskell.
Chapter 6.

14

HASKELL Type Classes

Polymorphism

Parametric polymorphism
“Occurs when a function is defined over a range of types, acting in
the same way for each type.”*

Ad-Hoc polymorphism (Overloading)

“Occurs when a function is defined over several different types,
acting in a different way for each type.”*

*Walder, P. and Stephen, B. (1998). How to make ad-hoc polymorphism
less ad hoc.

14

HASKELL Type Classes

Implementation

class Functor f where
fmap :: (a ->b) ->fa->fb

data List a = [] | a : [a]

data Maybe a = Nothing | Just a

9/14

HASKELL Type Classes

Implementation

class Functor f where
fmap :: (a ->b) ->fa ->fb

instance Functor List where

fmap _ [] =[]
fmap f (x:xs) = f x : fmap f xs

instance Functor Maybe where
fmap _ Nothing Nothing
fmap f (Just a) Just (f a)

10/14

Type Classes in CoqQ °

Syntax of Class and Instance declarations

Class Id (ai:m1) - (api7y) [isort] = {

f1 stypeéerfi;
1.‘,” ityperm}.
Instance ident:Id termy --- term, := {
fy = termyer;
fm ‘= termemt.

Where «;:7; are called parameters of the class and f:type, are called the
methods.

®The Coq Development Team. Reference Manual - The Coq Proof
Assistant - Inria (Version 8.4pl4). Chapter 19 Type Classes.

11/14

Type Classes in CoQ®

Example of Class and Instance declarations

Class EgDec (A : Type) := {
egb : A - A — bool ;
egb _prop:
V Xy, eqgb x y = true = x = y}.

Instance eq bool : EgDec bool := {
eqb x y := if x then y else negb y}.

Proof.

intros x y H.

destruct x ; destruct y ;
discriminate || reflexivity.
Qed.

12 /14

Type Classes in CoQ®

Using Type Classes

Binding classes

Definition neqb {A} {ega : EqDec A}
(x y : A) := negb (eqb x vy).

Superclasses

class (Eq a) => 0Ord a where
le :: a -> a -> Bool

Class Ord A {E : EgDec A} := {
le : A - A — bool}.

13 /14

Type Classes in CoqQ °

Using Type Classes

Substructures

Definition negb {A} {eqa : EgDec A}
(x y : A) := negb (egb x vy).

Superclasses

class (Eq a) => 0Ord a where
le :: a -> a -> Bool

Class Ord A {E : EgDec A} := {
le : A - A — bool}.

14 /14

