
“Mostly functional” programming does not work

Alejandro Gómez-Londoño

EAFIT University

June 26, 2014



Introduction

“Conventional programming languages are large,
complex, and inflexible. Their limited expressive power is
inadequate to justify their size and cost.”1

1John Backus. 1978. Can programming be liberated from the von Neumann
style?: a functional style and its algebra of programs. Commun. ACM 21, 8
(August 1978), 613-641



Introduction

void foo(int * arr , int len){

int i;

for(i=0;i<len;i++)

arr[i] += 1;

}

foo :: (Num a) => [a] -> [a]

foo arr = map (+1) arr



Imperative programming

“. . . is a programming paradigm that describes
computation in terms of statements that change a
program state”1

There is a global state

Variables ≈ storage cells

Assignments statements ≈ fetching and storing

Control statements ≈ Jump and test instructions

1Wikipedia contributors, “Imperative programming”. Wikipedia, The Free
Encyclopedia (Accessed June 16, 2014)



Imperative programming
The problem

“In a parallel/concurrent/distributed world, however, a
single global state is an unacceptable bottleneck. so the
foundational assumption of imperative programming that
underpins most contemporary programming languages is
starting to crumble” 1

1Erik Meijer. 2014. The curse of the excluded middle. Commun. ACM 57,
6 (June 2014),50-55.



Functional programming

“. . . is a style of programming which models
computations as the evaluation of expressions”1

Higher-order functions

Immutable data

Referential transparency

Side effects through monads

Lazy evaluation

1HaskellWiki contributors, “Functional programming”, HaskellWiki,
Haskell.org (Accessed June 16, 2014)



Side effects

“A side effect introduces a dependency between the
global state of the system and the behaviour of a
function ... Side effects are essentially invisible inputs to,
or outputs from, functions” 1

Modify global variables

Write/Read a file

Thread/Network communication

IO actions in general

1Bryan O’Sullivan, John Goerzen and Don Stewart (2008). Real World
Haskell, p. 27.



The problem

“There is a trend in the software industry to sell ‘mostly
functional’ programming as the silver bullet for solving
problems developers face with concurrency, parallelism
(manycore), and, of course, Big Data.” 1

MapReduce

Callbacks

Deferred execution

1Erik Meijer. 2014. The curse of the excluded middle. Commun. ACM 57,
6 (June 2014),50-55.



The problem

“Just like ‘mostly secure’, ‘mostly pure’ is wishful
thinking. The slightest implicit imperative effect erases
all the benefits of purity, just as a single bacterium can
infect a sterile wound” 1

1Erik Meijer. 2014. The curse of the excluded middle. Commun. ACM 57,
6 (June 2014),50-55.



The problem
Deferred execution

static bool LT30(int x) {

Console.Write("{0}? < 30\n", x);

return x < 30;

}

static bool MT20(int x) {

Console.Write("{0}? > 20\n", x);

return x > 20;

}

var q0 = new []{ 1, 25, 40, 5, 23 }. Where(LT30);

var q1 = q0.Where(MT20);

foreach (var r in q1){

Console.WriteLine("[{0}]\n",r);

}



The problem
Deferred execution (output)

1? < 30

1? > 20

25? < 30

25? > 20

25

40? < 30

5? < 30

5? > 20

23? < 30

23 > 20

23



The problem
Exceptions and Laziness

var xs = new []{ 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };

IEnumerable <int > q;

try { q = xs.Select(x=>1/x); }

catch { q = new int[]; }

foreach(var z in q){

Console.WriteLine(z): // throws here

}



Down the Rabbit Hole
Optimizations

string Ha() {

var ha = "Ha";

Console.Write(ha);

return ha;

}

// prints HaHa

var haha = Ha()+Ha();

// prints Ha

var ha = Ha();

var haha = ha+ha;



Down the Rabbit Hole
Abolish state mutation is not enough

new_cell(X) -> spawn(fun() -> cell(X) end).

cell(Val) ->

receive

{set , NewVal} -> cell(NewVal);

{get , Pid} -> Pid!{return , Val}, cell(Val);

{dispose} -> {}

end.

set_cell(Cell , NewVal) -> Cell!{set , NewVal}.

get_cell(Cell) -> Cell!{get , self()},

receive

{return , Val} -> Val

end.

dispose_cell(Cell) -> Cell!{dispose}.



Down the Rabbit Hole
Summary

Functional features can be tricky when mixed with imperative
programs

Imperative programs have side effects are EVERYWHERE

Abolish some side effects it’s not enough

A program without side effects is useless



Fundamentalist Functional Programming
All is (not) lost

int foo(int a, int b);

foo :: Int -> Int -> Int

foo :: Int -> Int -> IO Int



Fundamentalist Functional Programming

“To understand how fundamentalist functional
programming might help solve the concurrency problem,
it is important to understand that it is not just
imperative programming without side effects, which, as
we have seen, is useless” 1

1Erik Meijer. 2014. The curse of the excluded middle. Commun. ACM 57,
6 (June 2014),50-55.



Informal Introduction to Monads

Monads are a way of chaining computations that usually
carry some effect

-- The injection function (return)

return :: a -> m a

-- infix application function (bind)

(>>=) :: m a -> (a -> m b) -> m b



Informal Introduction to Monads

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

fooA :: a -> Maybe b

fooB :: b -> Maybe c



Informal Introduction to Monads
Usefull monads

Maybe

[]

Either e

ST

STM



Informal Introduction to Monads
The IO Monad

readFile :: FilePath -> IO String

writeFile :: FilePath -> String -> IO ()

getArgs :: IO [String]

forkIO :: IO () -> IO ThreadId

forkProcess :: IO () -> IO ProcessID

getLine :: IO String

putStrLn :: String -> IO ()



Informal Introduction to Monads
The IO Monad

(+) :: Int -> Int -> Int

odd :: Int -> Bool

getRandom :: IO Int

isOdd :: IO Bool

isOdd = getRandom >>= \x -> return (odd x)

unsafePerformIO :: IO a -> a


