
Combining Interactive and Automatic Proofs in First-Order
Theories

(research proposal – 2014)

Andrés Sicard-Ramírez

Seminar of the PhD in Mathematical Engineering
Universidad EAFIT

31 May 2013



Team Work

Andrés Sicard-Ramírez (main researcher)
Juan Fernando Ospina-Giraldo (advisor)
Jorge Ohel Acevedo-Acosta (master student of Applied Mathematics)
José Luis Echeverri-Jurado (master student of Applied Mathematics)



SMT Solvers

Satisfiability Modulo Theories
The study of automatic methods for checking the satisfiability of first-order formulae
with respect to some background theory is called Satisfiability Modulo
Theories (SMT), and SMT systems are usually referred as SMT solvers (Barret,
Sebastiani, Seshia, and Tinelli 2009).

Background theories
Real numbers
Integers
Lists
Strings
…



SMT Solvers

Satisfiability Modulo Theories
The study of automatic methods for checking the satisfiability of first-order formulae
with respect to some background theory is called Satisfiability Modulo
Theories (SMT), and SMT systems are usually referred as SMT solvers (Barret,
Sebastiani, Seshia, and Tinelli 2009).

Background theories
Real numbers
Integers
Lists
Strings
…



The Alt-Ergo SMT Solver



The MathSat5 SMT Solver



The veriT SMT Solver



The Z3 SMT Solver



The SMT-LIB v2.0 Language



The SMT-LIB v2.0 Language

Example (Satisfiability)
See example from the Z3 tutorial.



The SMT-LIB v2.0 Language

Example (Validity (excluded-middle.smt))
; QF_UF: Unquantified formulas built over a signature of
; uninterpreted (i.e., free) sort and function symbols.

(set-logic QF_UF)
(declare-const p Bool)
(define-fun conjecture () Bool
^^I(or p (not p)))
(assert (not conjecture))
(check-sat)



The SMT-LIB v2.0 Language

Example (cont.)

$ alt-ergo-0.95.1-x86_64 excluded-middle.smt2
unsat

$ cvc4-1.2-x86_64-linux-opt --lang smt2 excluded-middle.smt
unsat

$ z3 -smt2 excluded-middle.smt
unsat



Inductive Theorems Provers

Automatising induction
Automatic inductive theorem proving is an area with a long tradition. Inductive
theorems provers (ITPs) are based on different paradigms (for example, implicit
induction (Kapur and Musser 1987), explicit induction (Walther 1994) or descente
infinie (Wirth 2012)) and heuristics.



The QuodLibet ITP



The SPIKE ITP



Goals

General goal
Formalise first-order theorems belonging to some first-order theories by combining
interactive proofs performed in the Agda proof assistant with automatic proofs
performed by SMT solvers.

Specific goals
Compare the capabilities of ATPs and SMT solvers with the empty theory.
Use SMT solvers with some concrete theories.
Elaborate case studies related to using the SMT solvers.
Study the possibility of using ITPs.



Goals

General goal
Formalise first-order theorems belonging to some first-order theories by combining
interactive proofs performed in the Agda proof assistant with automatic proofs
performed by SMT solvers.

Specific goals
Compare the capabilities of ATPs and SMT solvers with the empty theory.

Use SMT solvers with some concrete theories.
Elaborate case studies related to using the SMT solvers.
Study the possibility of using ITPs.



Goals

General goal
Formalise first-order theorems belonging to some first-order theories by combining
interactive proofs performed in the Agda proof assistant with automatic proofs
performed by SMT solvers.

Specific goals
Compare the capabilities of ATPs and SMT solvers with the empty theory.
Use SMT solvers with some concrete theories.

Elaborate case studies related to using the SMT solvers.
Study the possibility of using ITPs.



Goals

General goal
Formalise first-order theorems belonging to some first-order theories by combining
interactive proofs performed in the Agda proof assistant with automatic proofs
performed by SMT solvers.

Specific goals
Compare the capabilities of ATPs and SMT solvers with the empty theory.
Use SMT solvers with some concrete theories.
Elaborate case studies related to using the SMT solvers.

Study the possibility of using ITPs.



Goals

General goal
Formalise first-order theorems belonging to some first-order theories by combining
interactive proofs performed in the Agda proof assistant with automatic proofs
performed by SMT solvers.

Specific goals
Compare the capabilities of ATPs and SMT solvers with the empty theory.
Use SMT solvers with some concrete theories.
Elaborate case studies related to using the SMT solvers.
Study the possibility of using ITPs.



Theoretical Framework

Previous work
A. Bove, P. Dybjer, and A. Sicard-Ramírez (2012). Combining Interactive and
Automatic Reasoning in First Order Theories of Functional Programs. In:
Foundations of Software Science and Computation Structures (FoSSaCS 2012).
Ed. by L. Birkedal. Vol. 7213. Lecture Notes in Computer Science. Springer,
pp. 104–118
A. Bove, P. Dybjer, and A. Sicard-Ramírez (2009). Embedding a Logical Theory
of Constructions in Agda. In: Proceedings of the 3rd Workshop on Programming
Languages Meets Program Verification (PLPV 2009), pp. 59–66



Theoretical Framework

First-Order Logic (FOL)
Terms ∋ 𝑡 ∶∶= 𝑥 variable

∣ 𝑐 constant
∣ 𝑓(𝑡, … , 𝑡) function

Formulae ∋ 𝐴 ∶∶= ⊤ ∣ ⊥ truth, falsehood
∣ 𝐴 ⇒ 𝐴 ∣ 𝐴 ∧ 𝐴 ∣ 𝐴 ∨ 𝐴 logical connectives
∣ ∀𝑥.𝐴 ∣ ∃𝑥.𝐴 quantifiers
∣ 𝑡 = 𝑡 equality
∣ 𝑃 (𝑡, … , 𝑡) predicate

Abbreviations

¬𝐴 def= 𝐴 ⇒ ⊥, 𝑡 ≠ 𝑡′ def= ¬(𝑡 = 𝑡′)



Theoretical Framework

Subset of Agda expressions
Normal Forms ∋ 𝑎 ∶∶= 𝑥 𝑎 ⋯ 𝑎 variable

∣ 𝑐 𝑎 ⋯ 𝑎 constant
∣ 𝜆𝑥.𝑎 𝜆-abstraction
∣ (𝑥 ∶ 𝑎) → 𝑎 dependent function type



Theoretical Framework

Agda required type formers and constants
Symbol Represents
N0 the empty type
N1 the unit type
+ the disjoint union type
× the Cartesian product type
Σ the dependent product type
I the identity type
𝑓∗ a function symbol 𝑓
𝑃 ∗ a predicate symbol 𝑃
D the domain of quantification



Theoretical Framework

FOL translation into Agda expressions
Terms 𝑥∗ = 𝑥

𝑐∗ = 𝑐
(𝑓(𝑡1, … , 𝑡𝑛))∗ = 𝑓∗ 𝑡∗

1 ⋯ 𝑡∗
𝑛



Theoretical Framework

FOL translation into Agda expressions (cont.)
Formulae ⊥∗ = N0

⊤∗ = N1
(𝐴 ∨ 𝐵)∗ = 𝐴∗ + 𝐵∗

(𝐴 ∧ 𝐵)∗ = 𝐴∗ × 𝐵∗

(𝐴 ⇒ 𝐵)∗ = 𝐴∗ → 𝐵∗

(∃𝑥.𝐴)∗ = Σ D (𝜆𝑥.𝐴∗)
(∀𝑥.𝐴)∗ = (𝑥 ∶ D) → 𝐴∗

(𝑡 = 𝑡′)∗ = I D 𝑡∗ 𝑡′∗

(𝑃 (𝑡1, … , 𝑡𝑛))∗ = 𝑃 ∗ 𝑡∗
1 ⋯ 𝑡∗

𝑛



Theoretical Framework

Inductive representation of FOL
Truth data ⊤ : Set where tt : ⊤

Falsehood data ⊥ : Set where

⊥-elim : {A : Set} → ⊥ → A
⊥-elim ()

Implication A → B (non-dependent function type)



Theoretical Framework

Inductive representation of FOL (cont.)
Conjunction data _∧_ (A B : Set) : Set where _,_ : A → B → A ∧ B

∧-proj₁ : ∀ {A B} → A ∧ B → A
∧-proj₁ (a , _) = a

∧-proj₂ : ∀ {A B} → A ∧ B → B
∧-proj₂ (_ , b) = b



Theoretical Framework

Inductive representation of FOL (cont.)
Disjunction data _∨_ (A B : Set) : Set where

inj₁ : A → A ∨ B
inj₂ : B → A ∨ B

case : ∀ {A B} → {C : Set} →
(A → C) → (B → C) → A ∨ B → C

case f g (inj₁ a) = f a
case f g (inj₂ b) = g b

Negation ¬_ : Set → Set
¬ A = A → ⊥

PEM postulate pem : ∀ {A} → A ∨ ¬ A



Theoretical Framework

Inductive representation of FOL (cont.)
Domain postulate D : Set

Universal
quantifier

(x : D) → A (dependent function type)

Existential data ∃ (A : D → Set) : Set where
quantifier _,_ : (t : D) → A t → ∃ A

∃-elim : {A : D → Set}{B : Set} →
∃ A → (∀ {x} → A x → B) → B

∃-elim (_ , Ax) h = h Ax



Theoretical Framework

Inductive representation of FOL (cont.)
Equality data _≡_ (x : D) : D → Set where refl : x ≡ x

subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y
subst A refl Ax = Ax



Theoretical Framework: The Apia Program

Agda file + ATP-pragmas

Modified version of Agda

TPTP translationApia

calls the ATPsE Vampire

MetisEquinox SPASS

(Un)proven conjecture

Agda interface file

TPTP formula



State of the Art

The Isabelle proof assistant and the Sledgehammer tool

Allows us to use ATPs and SMT solvers to prove properties arising in the
construction of interactive proofs and makes proof term reconstruction
(Blanchette, Böhme, and Paulson 2013).

The Coq proof assistant and the SMTCoq tool

The tool provides a certified checker for proof witnesses coming from the SMT
solver veriT and adds a new tactic named verit, that calls veriT on any Coq goal
(Armand, Faure, Grégoire, Keller, Théry, and Werner 2011).



State of the Art

The Isabelle proof assistant and the Sledgehammer tool

Allows us to use ATPs and SMT solvers to prove properties arising in the
construction of interactive proofs and makes proof term reconstruction
(Blanchette, Böhme, and Paulson 2013).
The Coq proof assistant and the SMTCoq tool

The tool provides a certified checker for proof witnesses coming from the SMT
solver veriT and adds a new tactic named verit, that calls veriT on any Coq goal
(Armand, Faure, Grégoire, Keller, Théry, and Werner 2011).



References

Armand, M., G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner (2011). A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In: Certified Programs
and Proofs (CPP 2011). Ed. by J.-P. Jouannaud and Z. Shao. Vol. 7080. Lecture Notes
in Computer Science. Springer, pp. 135–150.
Barret, C., R. Sebastiani, S. A. Seshia, and C. Tinelli (2009). Satisfiability Module Theories.
In: Handbook of Satisfiability. Ed. by A. Biere, M. Heule, H. van Maaren, and T. Walsh.
IOS Press. Chap. 26.
Blanchette, J. C., S. Böhme, and L. C. Paulson (2013). Extending Sledgehammer with SMT
Solvers. In: Journal of Automated Reasoning 51.1, pp. 109–128. doi: 10.1007/s10817-
013-9278-5.
Bove, A., P. Dybjer, and A. Sicard-Ramírez (2009). Embedding a Logical Theory of Con-
structions in Agda. In: Proceedings of the 3rd Workshop on Programming Languages Meets
Program Verification (PLPV 2009), pp. 59–66.

https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5


References

Bove, A., P. Dybjer, and A. Sicard-Ramírez (2012). Combining Interactive and Automatic
Reasoning in First Order Theories of Functional Programs. In: Foundations of Software
Science and Computation Structures (FoSSaCS 2012). Ed. by L. Birkedal. Vol. 7213.
Lecture Notes in Computer Science. Springer, pp. 104–118.
Kapur, D. and D. R. Musser (1987). Proof by Consistency. In: Artificial Intelligence 31.2,
pp. 125–157.
Walther, C. (1994). Mathematical Induction. In: Handbook of Logic in Artificial Intelligence
and Logic Programming. Ed. by D. M. Gabbay, C. J. Hogger, and J. A. Robinson. Vol. 2.
Oxford University Press, pp. 127–27.
Wirth, C.-P. (2012). Computer-Assisted Human-Oriented Inductive Theorem Proving by
Descente Infinie—a Manifesto. In: Logic Journal of the IGPL 20.6, pp. 1046–1063.


