Combining Interactive and Automatic Proofs in First-Order
Theories
(research proposal — 2014)

Andrés Sicard-Ramirez

Seminar of the PhD in Mathematical Engineering
Universidad EAFIT
31 May 2013

Team Work

@ Andrés Sicard-Ramirez (main researcher)
@ Juan Fernando Ospina-Giraldo (advisor)
@ Jorge Ohel Acevedo-Acosta (master student of Applied Mathematics)

@ José Luis Echeverri-Jurado (master student of Applied Mathematics)

SMT Solvers

Satisfiability Modulo Theories

The study of automatic methods for checking the satisfiability of first-order formulae
with respect to some background theory is called Satisfiability Modulo

Theories (SMT), and SMT systems are usually referred as SMT solvers (Barret,
Sebastiani, Seshia, and Tinelli 2009).

SMT Solvers

Satisfiability Modulo Theories

The study of automatic methods for checking the satisfiability of first-order formulae
with respect to some background theory is called Satisfiability Modulo

Theories (SMT), and SMT systems are usually referred as SMT solvers (Barret,
Sebastiani, Seshia, and Tinelli 2009).

Background theories
@ Real numbers
@ Integers
o Lists
@ Strings

The Alt-Ergo SMT Solver

ERGO (* AN OCAML SMT-SOLVER FOR SOFTWARE VERIFICATION

*)

Overview .
Overview
Download Alt-Ergo is an open source automatic theorem prover dedicated to
program verification. It is an SMT solver based on CC(X): a
People

congruence closure algorithm parameterized by an equational theory
X. Alt-Ergo is based on a home-made SAT-solver and implements an
Contact instantiation mechanism for quantified formulas. Its architecture is
summarized by the the following picture.

[SMT parser] [Why parserl

main loop

The MathSath SMT Solver

MathSAT 5

An SMT Solver for Formal Verification & More

Introduction

Welcome to the home page of MathSAT 5, an efficient Satisfiability modulo
theories (SMT) solver. MathSAT 5 is the successor of MathSAT 4, supporting
a wide range of theories (including e.g. equality and uninterpreted
functions, linear arithmetic, bit-vectors, and arrays) and functionalities
(including e.g. computation of Craig interpolants, extraction of unsatisfiable
cores, generation of models and proofs, and the ability of working
incrementally).

MathSAT 5 is a joint project of FBK-IRST and DISI-University of Trento.

Home

People
Documentation
Download
Publications
Links

The veriT SMT Solver

s
The Il solver

An open, trustable and efficient SMT-solver

| What is veriT?
veriT is a SMT (Satisfiability Modulo Theories) solver. It is open-source, proof-producing, and complete for quantifier-free
formulas with uninterpreted functions and difference logic on real numbers and integers.

The input format is the SMT-LIB language (both versions 1.2 and 2.0) and DIMACS, but veriT can also be used as a
standalone library and incorporated in third-party software. The tool is open-source and distributed under the BSD license.

veriT is complete for the logic of unquantified formulas over uninterpreted symbols, difference logic over integers and real
numbers, and the combination thereof. This corresponds to the logics identified as QF IDL, QF RDL, QF UF and QF UFIDL
in the SMT-LIB benchmarks. veriT includes quantifier reasoning capabilities through quantifier instantiation heuristics and
the integration of a first-order prover and linear arithmetics for integers and real numbers.

veriT has proof-production capabilities that may be used or checked by external tools. Although not (yet) as fast as the
solvers performing best in the SMT competition, veriT has a decent efficiency.

The ancestor of veriT is haRVey. Its web page can still be reached here.

| How to contribute?

veriT is under heavy development, and newcomers to the project are most welcome! Check the Job section of this site, and
contact us.

The Z3 SMT Solver

COdePlGX Project Hosting for Open Source Software Register | Sign In Search all ects Q

SOURCE CODE DOWNLOADS DOCUMENTATION DISCUSSIONS ISSUES PEOPLE LICENSE
Page Info | Change History (all pages) + Follow (60) Subscribe
Z3 is a high-performance theorem prover being developed at Microsoft Research. Search Wiki & Documentation Q

» Try Z3 online at RiSE4Fun using Python or SMT 2.0

» Follow Z3 on Facebook downloads
» Browse Z3 Q&A at StackOverflow
» Read our FAQ ACTIVITY

» Leo de Moura's Blog

The SMT-LIB v2.0 Language

SMT-LIB
The Satisfiability Modulo Theories Library

SMT-LIB is an international initiative aimed at facilitating research and development in
Satisfiability Modulo Theories. Since its inception in 2003, the initiative has pursued these aims
by focusing on the following concrete goals:

« provide standard rigorous descriptions of background theories used in SMT systems;

« develop and promote common input and output languages for SMT solvers;

« establish and make available to the research community a large library of benchmarks for
SMT solvers.

SMT-LIB was created with the expectation that the availability of common standards and a
library of benchmarks would greatly facilitate the evaluation and the comparison of SMT
systems, and advance the state of the art in the field in the same way as, for instance, the TPTP
library has done for theorem proving, or the SATLIB library has done initially for SAT.

Example (Satisfiability)
See example from the Z3 tutorial.

The SMT-LIB v2.0 Language

Example (Validity (excluded-middle.smt))

; QF_UF: Unquantified formulas built over a signature of
; uninterpreted (i.e., free) sort and function symbols.

(set-logic QF_UF)
(declare-const p Bool)
(define-fun conjecture () Bool
AI(or p (not p)))

(assert (not conjecture))
(check-sat)

The SMT-LIB v2.0 Language

Example (cont.)

$ alt-ergo-0.95.1-x86_64 excluded-middle.smt2
unsat

$ cve4-1.2-x86_64-linux-opt --lang smt2 excluded-middle.smt
unsat

$ z3 -smt2 excluded-middle.smt
unsat

Inductive Theorems Provers

Automatising induction

Automatic inductive theorem proving is an area with a long tradition. Inductive
theorems provers (ITPs) are based on different paradigms (for example, implicit
induction (Kapur and Musser 1987), explicit induction (Walther 1994) or descente
infinie (Wirth 2012)) and heuristics.

The QuodLibet ITP

Formale Methoden und Deduktion
Prof. Dr.]J. Avenhaus

EB Inf

~—

How to Prove Inductive Theorems?

Our research activities have their origins in the D4-Project (Reasoning in Equationally Defined
Structures) which was funded within the former Sonderforschungsbereich 314. Throughout the last few
years our overall goal has been the design and implementation of a rewrite-based first-order inductive
theorem prover. As to the prover's main application area we intend to use it for the (algebraic)
specification of and formal reasoning about data types such as the natural numbers, lists, strings, graphs
etc.

The formal basis of our inductive theorem proving system QuodLibet is given by a logical framework for
inductive theorem proving (ITP) that essentially consists of a specification language for the formalization
of data types, a calculus for inductive proofs and so-called proof state graphs as a means of representing
the various kinds of dependencies among formulas in proofs.

The SPIKE ITP

& spike-prover

a theorem prover Search projects

Project Home | Downloads Wiki Issues Source

Summary People

Project Information The SPIKE Prover

2 +1| Recommend this on Google
SPIKE is an automated theorem prover using formula-based induction. It is written in Objective

Starred by 1 user Caml.

Project feeds

To get the prover, run the command
Code license
New BSD License

svn checkout heep://spike-prover. googlecods. con/svr/ spike-prover-read-erily

;?121]-25 then read the README file from the 'trunk' directory.
NEW !!! Spike can be called from the Coq proof assistant using a tactic that
£i Members automatically performs lazy and mutual induction. We provide a zip file with the Coq
sorinica@gmail.com scripts using this tactic.

Goals

General goal

Formalise first-order theorems belonging to some first-order theories by combining
interactive proofs performed in the Agda proof assistant with automatic proofs
performed by SMT solvers.

Goals

General goal

Formalise first-order theorems belonging to some first-order theories by combining
interactive proofs performed in the Agda proof assistant with automatic proofs
performed by SMT solvers.

Specific goals
@ Compare the capabilities of ATPs and SMT solvers with the empty theory.

Goals

General goal

Formalise first-order theorems belonging to some first-order theories by combining
interactive proofs performed in the Agda proof assistant with automatic proofs
performed by SMT solvers.

Specific goals
@ Compare the capabilities of ATPs and SMT solvers with the empty theory.
@ Use SMT solvers with some concrete theories.

Goals

General goal

Formalise first-order theorems belonging to some first-order theories by combining
interactive proofs performed in the Agda proof assistant with automatic proofs
performed by SMT solvers.

Specific goals
@ Compare the capabilities of ATPs and SMT solvers with the empty theory.
@ Use SMT solvers with some concrete theories.

o Elaborate case studies related to using the SMT solvers.

Goals

General goal

Formalise first-order theorems belonging to some first-order theories by combining
interactive proofs performed in the Agda proof assistant with automatic proofs
performed by SMT solvers.

Specific goals
@ Compare the capabilities of ATPs and SMT solvers with the empty theory.
@ Use SMT solvers with some concrete theories.
o Elaborate case studies related to using the SMT solvers.

@ Study the possibility of using ITPs.

Theoretical Framework

Previous work

e A. Bove, P. Dybjer, and A. Sicard-Ramirez (2012). Combining Interactive and
Automatic Reasoning in First Order Theories of Functional Programs. In:
Foundations of Software Science and Computation Structures (FoSSaCS 2012).
Ed. by L. Birkedal. Vol. 7213. Lecture Notes in Computer Science. Springer,
pp. 104-118

e A. Bove, P. Dybjer, and A. Sicard-Ramirez (2009). Embedding a Logical Theory
of Constructions in Agda. In: Proceedings of the 3rd Workshop on Programming
Languages Meets Program Verification (PLPV 2009), pp. 5966

Theoretical Framework

First-Order Logic (FOL)
Terms >t =2
|

| f(t . 1)

Formulae 5 A== T | L
|A=A|ANA|AV A

| V. A | Jz.A
|t =t
| P(t,...,t)

Abbreviations

A A 1 2 Y =)

variable
constant

function

truth, falsehood
logical connectives
quantifiers
equality

predicate

Theoretical Framework

Subset of Agda expressions

Normal Forms 3 a =z a - a variable
|ca-a constant
| \z.a A-abstraction

| (z:a) — a dependent function type

Theoretical Framework

Agda required type formers and constants

Symbol

Represents

No

1

M X + 2

oy~

the empty type

the unit type

the disjoint union type

the Cartesian product type
the dependent product type
the identity type

a function symbol f

a predicate symbol P

the domain of quantification

FOL translation into Agda expressions

*

Terms T T
f=c¢

C
(f(tlv---7tn))* f* ti t:,

FOL translation into Agda expressions (cont.)

Formulae 1* =N,
T =N,
(AVB)* =A*+ B*

)

(AANB)*=A* x B*
(A= B)* *— B*
(Fz.A)* =X D (Ax.A")

)=
)
)

(V2. A)* = (z: D) — A*
(t=t)=1Dt t*
(P(ty, ..., t,))*

r'n

P* -[;* t*

Theoretical Framework

Inductive representation of FOL
Truth data T : Set where tt : T

Falsehood data 1 : Set where

l-elim: {A:Set} - 1L — A
1-elim ()

Implication A — B (non-dependent function type)

Theoretical Framework

Inductive representation of FOL (cont.)

Conjunction data _A_ (A B:Set):Setwhere_, :A—>B—>AAB

A-proj; Y {AB} - AAB—- A
A-proj; (a,_)=a

A-proj, : YV {AB} > AAB—B
A-projz (L, b)=b

Theoretical Framework

Inductive representation of FOL (cont.)

Disjunction data _v_ (A B : Set) : Set where
injj:A—>AvVB
inp:B—>AvB

case : Y {AB} — {C: Set} —
A->C)»>B—->C)—-AvB->C

casefg(injja)=fa

case f g (inj,b)=gb

Negation —_: Set — Set
“"A=A->1

PEM postulate pem : YV {A} > AVv-A

Theoretical Framework

Inductive representation of FOL (cont.)

Domain postulate D : Set

Universal (x:D)— A (dependent function type)
quantifier

Existential data 3 (A : D — Set) : Set where
quantifier ,_(t:D>At—=3IA

J-elim : {A : D — Set}{B : Set} —
dJA->(V{x} >Ax—>B)—B
J-elim (_, AxX) h=h Ax

Theoretical Framework

Inductive representation of FOL (cont.)

Equality data_=_ (x:D):D — Set where refl : x = x

subst: (A:D—>Set) >V {xy} > x=y—>Ax—> Ay
subst A refl Ax = Ax

Theoretical Framework: The Apia Program

Agda file + ATP-pragmas

’ Modified version of Agda ‘

Agda interface

file

Apia

Equinox‘

[El—calls the

| TPTP translation |

TPTP formula

ATPs

|

(lIn)hrroven coniectiire

State of the Art

@ The Isabelle proof assistant and the Sledgehammer tool

Allows us to use ATPs and SMT solvers to prove properties arising in the
construction of interactive proofs and makes proof term reconstruction
(Blanchette, Bohme, and Paulson 2013).

State of the Art

@ The Isabelle proof assistant and the Sledgehammer tool

Allows us to use ATPs and SMT solvers to prove properties arising in the
construction of interactive proofs and makes proof term reconstruction
(Blanchette, Bohme, and Paulson 2013).

@ The Coq proof assistant and the SMTCoq tool

The tool provides a certified checker for proof witnesses coming from the SMT
solver veriT and adds a new tactic named verit, that calls veriT on any Coq goal
(Armand, Faure, Grégoire, Keller, Théry, and Werner 2011).

References

[

Armand, M., G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner (2011). A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In: Certified Programs
and Proofs (CPP 2011). Ed. by J.-P. Jouannaud and Z. Shao. Vol. 7080. Lecture Notes
in Computer Science. Springer, pp. 135-150.

Barret, C., R. Sebastiani, S. A. Seshia, and C. Tinelli (2009). Satisfiability Module Theories.
In: Handbook of Satisfiability. Ed. by A. Biere, M. Heule, H. van Maaren, and T. Walsh.
[0S Press. Chap. 26.

Blanchette, J. C., S. Béhme, and L. C. Paulson (2013). Extending Sledgehammer with SMT
Solvers. In: Journal of Automated Reasoning 51.1, pp. 109-128. po1: 10.1007/s10817-
013-9278-5.

Bove, A., P. Dybjer, and A. Sicard-Ramirez (2009). Embedding a Logical Theory of Con-
structions in Agda. In: Proceedings of the 3rd Workshop on Programming Languages Meets
Program Verification (PLPV 2009), pp. 59-66.

https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5

References

B

Bove, A., P. Dybjer, and A. Sicard-Ramirez (2012). Combining Interactive and Automatic
Reasoning in First Order Theories of Functional Programs. In: Foundations of Software
Science and Computation Structures (FoSSaCS 2012). Ed. by L. Birkedal. Vol. 7213.
Lecture Notes in Computer Science. Springer, pp. 104-118.

Kapur, D. and D. R. Musser (1987). Proof by Consistency. In: Artificial Intelligence 31.2,
pp. 125-157.

Walther, C. (1994). Mathematical Induction. In: Handbook of Logic in Artificial Intelligence
and Logic Programming. Ed. by D. M. Gabbay, C. J. Hogger, and J. A. Robinson. Vol. 2.
Oxford University Press, pp. 127-27.

Wirth, C.-P. (2012). Computer-Assisted Human-Oriented Inductive Theorem Proving by
Descente Infinie—a Manifesto. In: Logic Journal of the IGPL 20.6, pp. 1046-1063.

