
Consistency of a Programming Logic for a Version of PCF Using
Domain Theory

Andrés Sicard-Raḿırez

Universidad EAFIT

Logic and Computation Seminar
Universidad EAFIT
5 April, 3 May 2013

A Core Functional Programming Language

Plotkin’s PCF language

PCF Features [Plotkin 1977]

Typed λ-calculus

PCF Features [Plotkin 1977]

Basic data types: Natural numbers and Booleans

A Programming Logic

Logical Theory of Constructions (LTC)

[Bove, Dybjer and Sicard-Raḿırez 2009]

LTC = type-free version of PCF

(terms, conversion and discrimination rules)

+ first-order logic

+ inductive predicates (not considered in this talk)

LTC-Terms

Terms

t ::= x variable

| t · t application

| λx.t λ-abstraction

| fix x.t fixed-point operator

| true | false | if Boolean constants

| 0 | succ | pred | iszero natural number constants

Convention

The binary application function symbol · is left-associative.

LTC-Formulae

Formulae

A ::= ⊤ | ⊥ truth, falsehood

| A ⇒ A | A ∧A | A ∨A binary logical connectives

| ∀x.A | ∃x.A quantifiers

| t = t equality

| P (t, . . . , t) predicate

Abbreviations

¬A def
= A ⇒ ⊥,

t ̸= t′
def
= ¬(t = t′).

Conversion and Discrimination Rules of LTC

Conversion rules

∀t t′. if · true · t · t′ = t,

∀t t′. if · false · t · t′ = t′,

pred · 0 = 0,

∀t. pred · (succ · t) = t,

iszero · 0 = true,

∀t. iszero · (succ · t) = false,

∀t t′. (λx.t) · t′ = t[x := t′],

∀t. fix x.t = t[x := fix x.t],

where t[x := t′] is the capture-free substitution of x for t′ in t.

Conversion and Discrimination Rules of LTC

Discrimination rules

true ̸= false,

∀t. 0 ̸= succ · t.

LTC Consistency

How we know that LTC is a consistent theory?

Standard answer: To build a model for LTC
[Chang and Keisler 1992, theorem 1.3.21.]
⇒ domain model for LTC

LTC Consistency

How we know that LTC is a consistent theory?

Standard answer: To build a model for LTC
[Chang and Keisler 1992, theorem 1.3.21.]

⇒ domain model for LTC

LTC Consistency

How we know that LTC is a consistent theory?

Standard answer: To build a model for LTC
[Chang and Keisler 1992, theorem 1.3.21.]
⇒ domain model for LTC

Introduction to Domain Theory

Motivation: Does λ-calculus have models?

“Historically my first model for the λ-calculus was discovered
in 1969 and details were provided in Scott (1972) (written in
1971).” [Scott 1980, p. 226.]

Introduction to Domain Theory

Non-standard definitions

pre-domain, domain, complete partial order (cpo), ω-cpo, bottomless ω-cpo, Scott’s
domain, ...

Convention

domain ≡ ω-complete partial order

Introduction to Domain Theory

Some bibliographic references

Winskel, G. [1993] [1994]. The Formal Semantics of Programming Languages. An
Introduction. Foundations of Computing Series. Second printing. MIT Press.

Mitchell, J. C. [1996]. Foundations for Programming Languages. MIT Press.

Streicher, T. [2006]. Domain-Theoretic Foundations of Functional Programming.
World Scientific Publishing Co. Pte. Ltd.

Plotkin, G. [1992]. Post-graduate Lecture Notes in Advance Domain Theory (In-
corporating the “Pisa Notes”). Electronic edition prepared by Yugo Kashiwagi and
Hidetaka Kondoh. url: http://homepages.inf.ed.ac.uk/gdp/ [visited on
29/07/2014].

http://homepages.inf.ed.ac.uk/gdp/

Introduction to Domain Theory

Some bibliographic references

Winskel, G. [1993] [1994]. The Formal Semantics of Programming Languages. An
Introduction. Foundations of Computing Series. Second printing. MIT Press.

Mitchell, J. C. [1996]. Foundations for Programming Languages. MIT Press.

Streicher, T. [2006]. Domain-Theoretic Foundations of Functional Programming.
World Scientific Publishing Co. Pte. Ltd.

Plotkin, G. [1992]. Post-graduate Lecture Notes in Advance Domain Theory (In-
corporating the “Pisa Notes”). Electronic edition prepared by Yugo Kashiwagi and
Hidetaka Kondoh. url: http://homepages.inf.ed.ac.uk/gdp/ [visited on
29/07/2014].

http://homepages.inf.ed.ac.uk/gdp/

Introduction to Domain Theory

Some bibliographic references

Winskel, G. [1993] [1994]. The Formal Semantics of Programming Languages. An
Introduction. Foundations of Computing Series. Second printing. MIT Press.

Mitchell, J. C. [1996]. Foundations for Programming Languages. MIT Press.

Streicher, T. [2006]. Domain-Theoretic Foundations of Functional Programming.
World Scientific Publishing Co. Pte. Ltd.

Plotkin, G. [1992]. Post-graduate Lecture Notes in Advance Domain Theory (In-
corporating the “Pisa Notes”). Electronic edition prepared by Yugo Kashiwagi and
Hidetaka Kondoh. url: http://homepages.inf.ed.ac.uk/gdp/ [visited on
29/07/2014].

http://homepages.inf.ed.ac.uk/gdp/

Introduction to Domain Theory

Some bibliographic references

Winskel, G. [1993] [1994]. The Formal Semantics of Programming Languages. An
Introduction. Foundations of Computing Series. Second printing. MIT Press.

Mitchell, J. C. [1996]. Foundations for Programming Languages. MIT Press.

Streicher, T. [2006]. Domain-Theoretic Foundations of Functional Programming.
World Scientific Publishing Co. Pte. Ltd.

Plotkin, G. [1992]. Post-graduate Lecture Notes in Advance Domain Theory (In-
corporating the “Pisa Notes”). Electronic edition prepared by Yugo Kashiwagi and
Hidetaka Kondoh. url: http://homepages.inf.ed.ac.uk/gdp/ [visited on
29/07/2014].

http://homepages.inf.ed.ac.uk/gdp/

Partially Ordered Sets

Definition (Partially ordered set)

A partially ordered set (poset) (D,⊑) is a set D on which the binary relation ⊑ satisfies
the following properties:

∀x. x ⊑ x (reflexive)

∀x y z. x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z (transitive)

∀x y. x ⊑ y ∧ y ⊑ x ⇒ x = y (antisymmetry)

Partially Ordered Sets

Examples

(Z,≤) is a poset.

Let a, b ∈ Z with a ̸= 0. The divisibility relation is defined by a | b def
= ∃c (ac = b).

Then (Z+, |) is a poset.

(P (A),⊆) is a poset.

Partially Ordered Sets

Example

Hasse diagram for the poset ({1, 2, 3, 4, 6, 8, 12}, |).

1

2 3

4 6

8 12

Partially Ordered Sets

Example

Hasse diagram for the poset ({a, b, c},⊆).

∅

{c}{a} {b}

{a, c}
{a, b}

{b, c}

{a, b, c}

Monotone Functions

Definition (Monotone function)

Let (D,⊑) and (D′,⊑′) be two posets. A function f : D → D′ is monotone if

∀x y. x ⊑ y ⇒ f(x) ⊑′ f(y).

Notable Elements

Definition (Upper bound)

Let (D,⊑) be a poset and let A ⊆ D. Let u ∈ D be an element such that a ⊑ u for all
elements a ∈ A, then u is an upper bound of A.

Examples

A = {a, b, c}
Upper bounds: {e, f, j, h}
A = {j, h}
No upper bounds.

A = {a, c, d, f}
Upper bounds: {f, h, j}

a

b c

d e

fg

h j

Notable Elements

Definition (Supremum or least upper bound)

An element x is the supremum or the least upper bound of the subset A, denoted by⋃
A, if x is an upper bound that is less than every other upper bound of A.

Example

A = {b, d, g}
Upper bounds: {g, h}⋃

A = g

a

b c

d e

fg

h j

ω-Complete Partial Orders

Definition (ω-chain)

Let D = (D,⊑) be a poset. A ω-chain of D is an increasing chain d0 ⊑ d1 ⊑ · · · ⊑
dn ⊑ · · · , where di ∈ D.

ω-Complete Partial Orders

Definition (ω-complete partial order)

Let D = (D,⊑) be a poset. The poset D is a ω-complete partial order (ω-cpo)
if [Plotkin 1992]

1 There is a least element ⊥ ∈ D, that is, ∀x. ⊥ ⊑ x. The element ⊥ is called
bottom.

2 For every ω-chain d0 ⊑ d1 ⊑ · · · ⊑ dn ⊑ · · · , the least upper bound
⋃

n∈ω dn ∈ D
exists.

ω-Complete Partial Orders

Definition (Lifted set)

Let A be a set. The symbol A⊥ denotes the ω-cpo whose elements A∪{⊥} are ordered
by x ⊑ y, if and only if, x = ⊥ or x = y [Mitchell 1996]. The ω-cpo A⊥ is called A
lifted.

Examples

The lifted unit type and the lifted Booleans B⊥.

⊥

()

data () = ()

⊥

false true

data Bool = True | False

ω-Complete Partial Orders

Definition (Lifted set)

Let A be a set. The symbol A⊥ denotes the ω-cpo whose elements A∪{⊥} are ordered
by x ⊑ y, if and only if, x = ⊥ or x = y [Mitchell 1996]. The ω-cpo A⊥ is called A
lifted.

Examples

The lifted unit type and the lifted Booleans B⊥.

⊥

()

data () = ()

⊥

false true

data Bool = True | False

ω-Complete Partial Orders

Example

The lifted natural numbers N⊥.

⊥

2 . . .10 n . . .

ω-Complete Partial Orders

Example

The ω-cpo LN of lazy natural numbers arises from a non-strict successor function, that
is, S(⊥) ̸= ⊥ [Escardó 1993]

. .
.

0 ≡ ⊥

0 1 ≡ S(⊥)

1 2 ≡ S(S(⊥))

2 ∞ ≡
⋃

n∈ω n

data Nat = Z

| S Nat

ω-Complete Partial Orders

Definition (Continuous function)

Let (D,⊑) and (D′,⊑′) be two ω-cpos. A function f : D → D′ is continuous if [Plotkin
1992]

1 The function is monotone.

2 The function preserves the least upper bounds of the ω-chains, that is,⋃
n∈ω

f(dn) = f(
⋃
n∈ω

dn),

for all ω-chains d0 ⊑ d1 ⊑ · · · ⊑ dn ⊑ · · · .

ω-Complete Partial Orders

Definition (Function space of continuous functions)

Let (D,⊑) and (D′,⊑′) be two ω-cpos. The function space of continuous functions is
the set [Winskel 1994]

[D → D′] = {f : D → D′ | f is continous }.

Theorem

The function space [D → D′] is an ω-cpo.

[D → D′] can be partially ordered point-wise by

f ⊑ g ⇔ ∀d ∈ D. f(d) ⊑′ g(d).

The bottom element is λx.⊥D′ .

ω-Complete Partial Orders

Definition (Function space of continuous functions)

Let (D,⊑) and (D′,⊑′) be two ω-cpos. The function space of continuous functions is
the set [Winskel 1994]

[D → D′] = {f : D → D′ | f is continous }.

Theorem

The function space [D → D′] is an ω-cpo.

[D → D′] can be partially ordered point-wise by

f ⊑ g ⇔ ∀d ∈ D. f(d) ⊑′ g(d).

The bottom element is λx.⊥D′ .

ω-Complete Partial Orders

Definition

Let f : D → D be a function, then

f0(d) = d,

fn+1(d) = f(fn(d)).

Theorem (The Fixed-Point Theorem)

Let (D,⊑) be an ω-cpo. Given f ∈ [D → D], then

Fix(f) =
⋃
n∈ω

fn(⊥),

is the least fixed-point of f [Winskel 1994], that is,

∀d. f(d) ⊑ d ⇒ Fix(f) ⊑ d,

f(Fix(f)) = Fix(f).

ω-Complete Partial Orders

Definition (Coalesced sum)

Let D1 = (D1,⊑1), . . . ,Dn = (Dn,⊑n) be ω-cpos. The coalesced sum, that is, disjoint
union with bottom elements identified D1 ⊕ · · · ⊕Dn is the ω-cpo [Plotkin 1992]⋃

i≤n

{(i, d) | d ∈ Di ∧ d ̸= ⊥}

 ∪ ⊥

with the order

x ⊑ y ⇔ x = ⊥ or

∃i ≤ n.∃d, d′ ∈ Di. d ⊑i d
′ ∧ x = (i, d) ∧ y = (i, d′).

ω-Complete Partial Orders

Associated with the coalesced sum are the injection functions

ini : Di → D1 ⊕ · · · ⊕Dn

ini(d) =

{
⊥ if d = ⊥,

(i, d) otherwise.

Domain Model for LTC

Terms: The term language of LTC

From domain theory it is known that a domain model for Terms, where self-application
is allowed and where the terms will have values in the Booleans or the lazy natural
numbers is a solution to the recursive domain equation [Plotkin 1992]

D ∼= B⊥ ⊕ LN⊕ (D → D)⊥.

Domain Model for LTC

Notation

Let D be a domain and let ρ be a valuation on D (a function from the set of variables
to D).

ρ(x 7→ d): the valuation which maps x to d and otherwise acts like ρ.

λx.e: λ-abstraction on D.

Domain Model for LTC

Convention

D: A solution to the recursive domain equation for LTC.

From terms to functions and viceverse

The domain D comes equipped with the continuous functions [Barendregt 2004]

F : D → [D → D],

G : [D → D] → D.

Domain Model for LTC

Interpretation function

J Kρ : Terms → D: (Based on Pitts [1994])

JxKρ = ρ(x),

Jλx.tKρ = G(λd.JtKρ(x 7→ d)),

Jt · t′Kρ =

{
f(Jt′Kρ) if JtKρ = G(f),

⊥ otherwise,

Jfix x.tKρ = Fix(λd.JtKρ(x 7→ d)),

JtrueKρ = true,

JfalseKρ = false,

JifKρ = G(if),

J0Kρ = 0,

JsuccKρ = G(succ),

JpredKρ = G(pred),

JiszeroKρ = G(iszero),

where

Domain Model for LTC

we omit the use of the injection functions ini, and the continuous functions if , succ,
pred and iszero from D to D are defined by

if(d) =

λxy.x if d = true,

λxy.y if d = false,

⊥ otherwise,

succ(d) =

n+ 1 if d = n ∈ LN,

n+ 1 if d = n ∈ LN,

⊥ otherwise,

Domain Model for LTC

pred(d) =

0 if d = 0,

d′ if d = succ(d′),

⊥ otherwise,

iszero(d) =

true if d = 0,

false if d = succ(d′),

⊥ otherwise.

Domain Model for LTC

If the LTC equality is interpreted as the equality in D, it is possible verify that the
conversion and discrimination rules of LTC are satisfied in D.

Bonus Slides

Monotone Functions

Example (Counter-example of monotone function)

halt : N⊥ → B⊥

halt(n) =

{
true if n ̸= ⊥,

false if n = ⊥.

Let n ∈ N⊥. Since ⊥ ⊑ n, and not necessarily halt(⊥) ⊑ halt(n), that is, false ̸⊑
true, the halt function is non-monotone [Schmidt 1986].

Continuous Functions

Example (Monotone but non-continuous function1)

f : [Bool] → Bool

f(xs) =

⊥ if xs is finite,

False if xs = [False,False, . . .],

True otherwise.

Given d0 = [], d1 = [False], d2 = [False,False], . . . , we have

⋃
n∈ω

f(dn) = ⊥ ≠ False = f([False,False, . . .]) = f

(⋃
n∈ω

dn

)
,

that is, the function f is non-continuous.
1http:

//www.reddit.com/r/types/comments/1ahfh7/intuition_behind_continuity_in_winskels/.

http://www.reddit.com/r/types/comments/1ahfh7/intuition_behind_continuity_in_winskels/
http://www.reddit.com/r/types/comments/1ahfh7/intuition_behind_continuity_in_winskels/

Complete Partial Orders

Definition (Directed set)

Let D = (D,⊑) be a poset. A subset X ⊆ D is directed if X ̸= ∅ and

∀x y ∈ X.∃z ∈ X. x ⊑ z ∧ y ⊑ z.

Definition (Complete partial order)

Let D = (D,⊑) be a poset. The poset D is a complete partial order (cpo) if [Barendregt
2004]

1 There is a least element ⊥ ∈ D, that is, ∀x. ⊥ ⊑ x. The element ⊥ is called
bottom.

2 For every directed X ⊆ D, the least upper bound
⋃
X ∈ D exists.

Complete Partial Orders

Note

The Scott domains are built from complete partial orders. See, for example, Gunter and
Scott [1990].

References

Barendregt, H. P. [1984] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised
edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics.
Elsevier (cit. on pp. 40, 48).

Bove, A., Dybjer, P. and Sicard-Raḿırez, A. (2009). Embedding a Logical Theory of Con-
structions in Agda. In: Proceedings of the 3rd Workshop on Programming Languages Meets
Program Verification (PLPV 2009), pp. 59–66 (cit. on p. 5).

Chang, C. C. and Keisler, H. J. [1973] (1992). Model Theory. 3rd ed. Vol. 73. Studies in
Logic and the Foundations of Mathematics. 3rd impression. North-Holland (cit. on pp. 10–
12).

Escardó, M. H. (1993). On Lazy Natural Numbers with Applications to Computability
Theory and Functional Programming. SIGACT News 24.1, pp. 61–67. doi: 10.1145/
152992.153008 (cit. on p. 31).

Gunter, C. A. and Scott, D. S. (1990). Semantics Domains. In: Handbook of Theoretical
Computer Science. Ed. by van Leeuwen, J. Vol. B. Formal Models and Semantics. MIT
Press. Chap. 12 (cit. on p. 49).

https://doi.org/10.1145/152992.153008
https://doi.org/10.1145/152992.153008

References

Mitchell, J. C. (1996). Foundations for Programming Languages. MIT Press (cit. on pp. 15–
18, 28, 29).

Pitts, A. M. (1994). Computational Adequacy via ‘Mixed’ Inductive Definitions. In: Math-
ematical Foundations of Programming Semantics. Ed. by Brookes, S., Main, M., Melton,
A., Mislove, M. and Schmidt, D. Vol. 802. Lecture Notes in Computer Science. Springer,
pp. 72–82. doi: 10.1007/3-540-58027-1_3 (cit. on p. 41).

Plotkin, G. D. (1977). LCF Considered as a Programming Language. Theoretical Computer
Science 5.3, pp. 223–255. doi: 10.1016/0304-3975(77)90044-5 (cit. on pp. 3, 4).

Plotkin, G. (1992). Post-graduate Lecture Notes in Advance Domain Theory (Incorporating
the “Pisa Notes”). Electronic edition prepared by Yugo Kashiwagi and Hidetaka Kondoh.
url: http://homepages.inf.ed.ac.uk/gdp/ (visited on 29/07/2014) (cit. on pp. 15–
18, 27, 32, 36, 38).

Schmidt, D. A. (1986). Denotational Semantics. A Methodology for Language Develop-
ment. Allyn and Bacon (cit. on p. 46).

https://doi.org/10.1007/3-540-58027-1_3
https://doi.org/10.1016/0304-3975(77)90044-5
http://homepages.inf.ed.ac.uk/gdp/

References

Scott, D. (1980). Lambda Calculus: Some Models, Some Philosophy. In: The Kleene Sym-
posium. Ed. by Barwise, J., Keisler, H. J. and Kunen, K. Vol. 101. Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Company, pp. 223–265 (cit. on
p. 13).

Streicher, T. (2006). Domain-Theoretic Foundations of Functional Programming. World
Scientific Publishing Co. Pte. Ltd. (cit. on pp. 15–18).

Winskel, G. [1993] (1994). The Formal Semantics of Programming Languages. An Intro-
duction. Foundations of Computing Series. Second printing. MIT Press (cit. on pp. 15–18,
33–35).

