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A Core Functional Programming Language

Plotkin’s PCF language



PCF Features [Plotkin 1977]

Typed λ-calculus



PCF Features [Plotkin 1977]

Basic data types: Natural numbers and Booleans



A Programming Logic

Logical Theory of Constructions (LTC)

[Bove, Dybjer and Sicard-Raḿırez 2009]

LTC = type-free version of PCF

(terms, conversion and discrimination rules)

+ first-order logic

+ inductive predicates (not considered in this talk)



LTC-Terms

Terms

t ::= x variable

| t · t application

| λx.t λ-abstraction

| fix x.t fixed-point operator

| true | false | if Boolean constants

| 0 | succ | pred | iszero natural number constants

Convention

The binary application function symbol · is left-associative.



LTC-Formulae

Formulae

A ::= ⊤ | ⊥ truth, falsehood

| A ⇒ A | A ∧A | A ∨A binary logical connectives

| ∀x.A | ∃x.A quantifiers

| t = t equality

| P (t, . . . , t) predicate

Abbreviations

¬A def
= A ⇒ ⊥,

t ̸= t′
def
= ¬(t = t′).



Conversion and Discrimination Rules of LTC

Conversion rules

∀t t′. if · true · t · t′ = t,

∀t t′. if · false · t · t′ = t′,

pred · 0 = 0,

∀t. pred · (succ · t) = t,

iszero · 0 = true,

∀t. iszero · (succ · t) = false,

∀t t′. (λx.t) · t′ = t[x := t′],

∀t. fix x.t = t[x := fix x.t],

where t[x := t′] is the capture-free substitution of x for t′ in t.



Conversion and Discrimination Rules of LTC

Discrimination rules

true ̸= false,

∀t. 0 ̸= succ · t.



LTC Consistency

How we know that LTC is a consistent theory?

Standard answer: To build a model for LTC
[Chang and Keisler 1992, theorem 1.3.21.]
⇒ domain model for LTC



LTC Consistency

How we know that LTC is a consistent theory?

Standard answer: To build a model for LTC
[Chang and Keisler 1992, theorem 1.3.21.]

⇒ domain model for LTC



LTC Consistency

How we know that LTC is a consistent theory?

Standard answer: To build a model for LTC
[Chang and Keisler 1992, theorem 1.3.21.]
⇒ domain model for LTC



Introduction to Domain Theory

Motivation: Does λ-calculus have models?

“Historically my first model for the λ-calculus was discovered
in 1969 and details were provided in Scott (1972) (written in
1971).” [Scott 1980, p. 226.]



Introduction to Domain Theory

Non-standard definitions

pre-domain, domain, complete partial order (cpo), ω-cpo, bottomless ω-cpo, Scott’s
domain, ...

Convention

domain ≡ ω-complete partial order
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Partially Ordered Sets

Definition (Partially ordered set)

A partially ordered set (poset) (D,⊑) is a set D on which the binary relation ⊑ satisfies
the following properties:

∀x. x ⊑ x (reflexive)

∀x y z. x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z (transitive)

∀x y. x ⊑ y ∧ y ⊑ x ⇒ x = y (antisymmetry)



Partially Ordered Sets

Examples

(Z,≤) is a poset.

Let a, b ∈ Z with a ̸= 0. The divisibility relation is defined by a | b def
= ∃c (ac = b).

Then (Z+, |) is a poset.

(P (A),⊆) is a poset.



Partially Ordered Sets

Example

Hasse diagram for the poset ({1, 2, 3, 4, 6, 8, 12}, |).

1

2 3

4 6

8 12



Partially Ordered Sets

Example

Hasse diagram for the poset ({a, b, c},⊆).

∅

{c}{a} {b}

{a, c}
{a, b}

{b, c}

{a, b, c}



Monotone Functions

Definition (Monotone function)

Let (D,⊑) and (D′,⊑′) be two posets. A function f : D → D′ is monotone if

∀x y. x ⊑ y ⇒ f(x) ⊑′ f(y).



Notable Elements

Definition (Upper bound)

Let (D,⊑) be a poset and let A ⊆ D. Let u ∈ D be an element such that a ⊑ u for all
elements a ∈ A, then u is an upper bound of A.

Examples

A = {a, b, c}
Upper bounds: {e, f, j, h}
A = {j, h}
No upper bounds.

A = {a, c, d, f}
Upper bounds: {f, h, j}

a

b c

d e

fg

h j



Notable Elements

Definition (Supremum or least upper bound)

An element x is the supremum or the least upper bound of the subset A, denoted by⋃
A, if x is an upper bound that is less than every other upper bound of A.

Example

A = {b, d, g}
Upper bounds: {g, h}⋃

A = g

a

b c

d e

fg

h j



ω-Complete Partial Orders

Definition (ω-chain)

Let D = (D,⊑) be a poset. A ω-chain of D is an increasing chain d0 ⊑ d1 ⊑ · · · ⊑
dn ⊑ · · · , where di ∈ D.



ω-Complete Partial Orders

Definition (ω-complete partial order)

Let D = (D,⊑) be a poset. The poset D is a ω-complete partial order (ω-cpo)
if [Plotkin 1992]

1 There is a least element ⊥ ∈ D, that is, ∀x. ⊥ ⊑ x. The element ⊥ is called
bottom.

2 For every ω-chain d0 ⊑ d1 ⊑ · · · ⊑ dn ⊑ · · · , the least upper bound
⋃

n∈ω dn ∈ D
exists.



ω-Complete Partial Orders

Definition (Lifted set)

Let A be a set. The symbol A⊥ denotes the ω-cpo whose elements A∪{⊥} are ordered
by x ⊑ y, if and only if, x = ⊥ or x = y [Mitchell 1996]. The ω-cpo A⊥ is called A
lifted.

Examples

The lifted unit type and the lifted Booleans B⊥.

⊥

()

data () = ()

⊥

false true

data Bool = True | False
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ω-Complete Partial Orders

Example

The lifted natural numbers N⊥.

⊥

2 . . .10 n . . .



ω-Complete Partial Orders

Example

The ω-cpo LN of lazy natural numbers arises from a non-strict successor function, that
is, S(⊥) ̸= ⊥ [Escardó 1993]

. .
.

0 ≡ ⊥

0 1 ≡ S(⊥)

1 2 ≡ S(S(⊥))

2 ∞ ≡
⋃

n∈ω n

data Nat = Z

| S Nat



ω-Complete Partial Orders

Definition (Continuous function)

Let (D,⊑) and (D′,⊑′) be two ω-cpos. A function f : D → D′ is continuous if [Plotkin
1992]

1 The function is monotone.

2 The function preserves the least upper bounds of the ω-chains, that is,⋃
n∈ω

f(dn) = f(
⋃
n∈ω

dn),

for all ω-chains d0 ⊑ d1 ⊑ · · · ⊑ dn ⊑ · · · .



ω-Complete Partial Orders

Definition (Function space of continuous functions)

Let (D,⊑) and (D′,⊑′) be two ω-cpos. The function space of continuous functions is
the set [Winskel 1994]

[D → D′] = {f : D → D′ | f is continous }.

Theorem

The function space [D → D′] is an ω-cpo.

[D → D′] can be partially ordered point-wise by

f ⊑ g ⇔ ∀d ∈ D. f(d) ⊑′ g(d).

The bottom element is λx.⊥D′ .
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ω-Complete Partial Orders

Definition

Let f : D → D be a function, then

f0(d) = d,

fn+1(d) = f(fn(d)).

Theorem (The Fixed-Point Theorem)

Let (D,⊑) be an ω-cpo. Given f ∈ [D → D], then

Fix(f) =
⋃
n∈ω

fn(⊥),

is the least fixed-point of f [Winskel 1994], that is,

∀d. f(d) ⊑ d ⇒ Fix(f) ⊑ d,

f(Fix(f)) = Fix(f).



ω-Complete Partial Orders

Definition (Coalesced sum)

Let D1 = (D1,⊑1), . . . ,Dn = (Dn,⊑n) be ω-cpos. The coalesced sum, that is, disjoint
union with bottom elements identified D1 ⊕ · · · ⊕Dn is the ω-cpo [Plotkin 1992]⋃

i≤n

{(i, d) | d ∈ Di ∧ d ̸= ⊥}

 ∪ ⊥

with the order

x ⊑ y ⇔ x = ⊥ or

∃i ≤ n.∃d, d′ ∈ Di. d ⊑i d
′ ∧ x = (i, d) ∧ y = (i, d′).



ω-Complete Partial Orders

Associated with the coalesced sum are the injection functions

ini : Di → D1 ⊕ · · · ⊕Dn

ini(d) =

{
⊥ if d = ⊥,

(i, d) otherwise.



Domain Model for LTC

Terms: The term language of LTC

From domain theory it is known that a domain model for Terms, where self-application
is allowed and where the terms will have values in the Booleans or the lazy natural
numbers is a solution to the recursive domain equation [Plotkin 1992]

D ∼= B⊥ ⊕ LN⊕ (D → D)⊥.



Domain Model for LTC

Notation

Let D be a domain and let ρ be a valuation on D (a function from the set of variables
to D).

ρ(x 7→ d): the valuation which maps x to d and otherwise acts like ρ.

λx.e: λ-abstraction on D.



Domain Model for LTC

Convention

D: A solution to the recursive domain equation for LTC.

From terms to functions and viceverse

The domain D comes equipped with the continuous functions [Barendregt 2004]

F : D → [D → D],

G : [D → D] → D.



Domain Model for LTC

Interpretation function

J Kρ : Terms → D: (Based on Pitts [1994])

JxKρ = ρ(x),

Jλx.tKρ = G(λd.JtKρ(x 7→ d)),

Jt · t′Kρ =

{
f(Jt′Kρ) if JtKρ = G(f),

⊥ otherwise,

Jfix x.tKρ = Fix(λd.JtKρ(x 7→ d)),

JtrueKρ = true,

JfalseKρ = false,

JifKρ = G(if),

J0Kρ = 0,

JsuccKρ = G(succ),

JpredKρ = G(pred),

JiszeroKρ = G(iszero),

where



Domain Model for LTC

we omit the use of the injection functions ini, and the continuous functions if , succ,
pred and iszero from D to D are defined by

if(d) =


λxy.x if d = true,

λxy.y if d = false,

⊥ otherwise,

succ(d) =


n+ 1 if d = n ∈ LN,

n+ 1 if d = n ∈ LN,

⊥ otherwise,



Domain Model for LTC

pred(d) =


0 if d = 0,

d′ if d = succ(d′),

⊥ otherwise,

iszero(d) =


true if d = 0,

false if d = succ(d′),

⊥ otherwise.



Domain Model for LTC

If the LTC equality is interpreted as the equality in D, it is possible verify that the
conversion and discrimination rules of LTC are satisfied in D.



Bonus Slides



Monotone Functions

Example (Counter-example of monotone function)

halt : N⊥ → B⊥

halt(n) =

{
true if n ̸= ⊥,

false if n = ⊥.

Let n ∈ N⊥. Since ⊥ ⊑ n, and not necessarily halt(⊥) ⊑ halt(n), that is, false ̸⊑
true, the halt function is non-monotone [Schmidt 1986].



Continuous Functions

Example (Monotone but non-continuous function1)

f : [Bool] → Bool

f(xs) =


⊥ if xs is finite,

False if xs = [False,False, . . . ],

True otherwise.

Given d0 = [], d1 = [False], d2 = [False,False], . . . , we have

⋃
n∈ω

f(dn) = ⊥ ≠ False = f([False,False, . . . ]) = f

(⋃
n∈ω

dn

)
,

that is, the function f is non-continuous.
1http:

//www.reddit.com/r/types/comments/1ahfh7/intuition_behind_continuity_in_winskels/.

http://www.reddit.com/r/types/comments/1ahfh7/intuition_behind_continuity_in_winskels/
http://www.reddit.com/r/types/comments/1ahfh7/intuition_behind_continuity_in_winskels/


Complete Partial Orders

Definition (Directed set)

Let D = (D,⊑) be a poset. A subset X ⊆ D is directed if X ̸= ∅ and

∀x y ∈ X.∃z ∈ X. x ⊑ z ∧ y ⊑ z.

Definition (Complete partial order)

Let D = (D,⊑) be a poset. The poset D is a complete partial order (cpo) if [Barendregt
2004]

1 There is a least element ⊥ ∈ D, that is, ∀x. ⊥ ⊑ x. The element ⊥ is called
bottom.

2 For every directed X ⊆ D, the least upper bound
⋃
X ∈ D exists.



Complete Partial Orders

Note

The Scott domains are built from complete partial orders. See, for example, Gunter and
Scott [1990].
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