Verification of Functional Programs
|. First-Order Theory of Combinators

Andrés Sicard-Ramirez!

(joint work with Ana Bove? and Peter Dybjer?)

LEAFIT University, Colombia

2Chalmers University of Technology, Sweden

Logic and Computation Seminar
EAFIT University
31 August 2012

Introduction

What if we have written a Haskell-like program and we want to
verify it?

Introduction

What if we have written a Haskell-like program and we want to
verify it?

@ What programming logic should we use?

’A notion of program

A notion of specification
(logic with equality + induction)

\

A notion of satisfaction
(inference rules)

Introduction

What if we have written a Haskell-like program and we want to
verify it?

@ What programming logic should we use?

@ What proof assistant should we use?

Introduction

What if we have written a Haskell-like program and we want to
verify it?

@ What programming logic should we use?

@ What proof assistant should we use?

© Can part of the job be automatic?

e Can we use automatic theorem provers for first-order logic
(ATPs)?

o Can we use Satisfiability Modulo Theories (SMT) solvers?

o Can we use inductive theorem provers (ITPs)?

First-Order Theory of Combinators

What programming logic should we use?

We propose the First-Order Theory of Combinators.

First-Order Theory of Combinators

What programming logic should we use?

We propose the First-Order Theory of Combinators.

Features:

© general recursion (structural, non-structural, nested and
higher-order recursion),

First-Order Theory of Combinators

What programming logic should we use?

We propose the First-Order Theory of Combinators.

Features:

© general recursion (structural, non-structural, nested and
higher-order recursion),

@ higher-order functions,

First-Order Theory of Combinators

What programming logic should we use?

We propose the First-Order Theory of Combinators.

Features:

© general recursion (structural, non-structural, nested and
higher-order recursion),

@ higher-order functions,

© partial and total correctness, and

First-Order Theory of Combinators

What programming logic should we use?

We propose the First-Order Theory of Combinators.

Features:

© general recursion (structural, non-structural, nested and
higher-order recursion),

@ higher-order functions,
© partial and total correctness, and

@ inductive and coinductive predicates.

Haskell: A very large language

Haskell

(represented by a data type with hundreds of constructors)

- full translation

Core

(typed A-calculus with few syntactic forms)

Source: Marlow and Peyton-Jones (2012). “The Glasgow Haskell
Compiler”.

Plotkin's PCF: A “simple” functional programming
language

Types 3 0 ::= nat natural numbers
|lo—o function type
Terms >t ===x variable
| tt application
| Ax:0o.t A-abstraction
| fix,,(t) fixed-point operator
| 0 zero
| succ(t) succesor function
| pred(t) predecessor function
| iszero(t,t,t) conditional

Source: Plotkin (1977). “LCF Considered as a Programming
Language”.

A Logical Theory of Constructions (LTC) for type-free PCF

History (very incomplete):

@ Aczel (1977). “The Strength of MartinL6f's Intuitionistic
Type Theory with One Universe”.

A Logical Theory of Constructions (LTC) for type-free PCF

History (very incomplete):
@ Aczel (1977). “The Strength of MartinL6f's Intuitionistic
Type Theory with One Universe”.

@ Dybjer (1985). "Program Verification in a Logical Theory of
Constructions”.

A Logical Theory of Constructions (LTC) for type-free PCF

History (very incomplete):
@ Aczel (1977). “The Strength of MartinL6f's Intuitionistic
Type Theory with One Universe".

@ Dybjer (1985). "Program Verification in a Logical Theory of
Constructions”.

© Bove, Dybjer and Sicard-Ramirez (2009). “Embedding a
Logical Theory of Constructions in Agda’.

LTC: Terms

Terms 2t ==z
-t
| Ax. t
| fix z. ¢
| true | false | if
| 0 | succ | pred | iszero

| loop

variable

application

A-abstraction

fixed-point operator

partial Boolean constants

partial natural number constants

looping constant

LTC: Formulae

Formulae> A==T | L
| A= A|ANA|AVA

| Vz.A | Jx. A
=1t

| P(t,...,t)

| Bool(t)

| N (#)

truth, falsehood

binary logical connectives
quantifiers

equality

predicate

total Booleans predicate
total natural numbers

predicate

LTC: Inference rules

Axioms and axiom schemata of LTC
@ Axioms for the intuitionistic logical constants
@ Conversion rules for the combinators
© Discrimination rules

@ |Introduction and elimination rules for Bool and N

LTC: Conversion and discrimination rules

Conversion rules for the combinators

Vit if -true-t -t =t,
Vtt'.if -false-t-t' =1t,
pred - 0 = 0,
Vt. pred - (succ - t) = t,

iszero - 0 = true,

Vt. iszero - (succ - t) = false,

loop = loop,

Vit Az t) -t = t[x =],
Vt. fix x. t = t[z = fix x. t],

LTC: Conversion and discrimination rules

Conversion rules for the combinators

Vit if -true-t -t =t,
Vtt'.if -false-t-t' =1t,
pred - 0 = 0,
Vt. pred - (succ-t) =t,

iszero - 0 = true,

Vt. iszero - (succ - t) = false,

loop = loop,

Vit Az t) -t = t[x =],
Vt. fix x. t = t[z = fix x. t],

Discrimination rules

true # false,
Vt. 0 # succ - t.

LTC: Rules for Bool

Introduction and elimination (expressing proof by case analysis on
total Boolean values) rules for Bool:

Bool(true) Bool(false)

Bool(t) A(true) A(false)
A(t)

LTC: Rules for V

Introduction and elimination (expressing proof by mathematical
induction) rules for V:
N{(t)
N(0) N (succ - t)

First-Order Theory of Combinators (FOTC)

Source: Bove, Dybjer and Sicard-Ramirez (2012). “Combining
Interactive and Automatic Reasoning in First Order Theories of
Functional Programs”.

o First stage: A first-order theory

First-Order Theory of Combinators (FOTC)

Source: Bove, Dybjer and Sicard-Ramirez (2012). “Combining
Interactive and Automatic Reasoning in First Order Theories of
Functional Programs”.

o First stage: A first-order theory

@ Second stage: Add of new inductively defined predicates

First-Order Theory of Combinators (FOTC)

Source: Bove, Dybjer and Sicard-Ramirez (2012). “Combining
Interactive and Automatic Reasoning in First Order Theories of
Functional Programs”.

o First stage: A first-order theory

@ Second stage: Add of new inductively defined predicates

@ Third stage: Add of co-inductively defined predicates

FOTC: A first-order theory

Lambda-lifting
Add a new function symbol for each recursive function definition of
the form

Jag oz, = e[fv Ly eee 7I7J:

instead of use the \-abstraction and the fixed-point operator from
LTC.

FOTC: Terms

The grammar for the terms of FOTC is now first order:

Terms >t =1 variable
| t-t application
| true | false | if partial Boolean constants

| 0| succ | pred | iszero partial natural number constants
| loop looping combinator

| f function

where f ranges over new combinators defined by recursive
equations.

FOTC: Add of new inductively defined predicates

Example

Even(t)
Even(0) Even(succ - succ - t)

[A@)]

Even(t) A(0) A(succ - succ - t)

FOTC: Add of co-inductively defined predicates

Methodology:

@ The inductively defined predicates are defined as the least
fixed-point of the operator associated with their introduction
rules.

FOTC: Add of co-inductively defined predicates

Methodology:

@ The inductively defined predicates are defined as the least
fixed-point of the operator associated with their introduction
rules.

@ The co-inductively defined predicates are defined as the
greatest fixed-point of the operator associated with their
introduction rules.

Examples of verification

@ Non-structural recursion: Program that computes the greatest
common divisor of two natural numbers using Euclid’s
algorithm

@ Nested recursion: Properties and termination of McCarthy91
function

Higher-order recursion: The mirror function for Rose trees
Co-recursive function: The map-iterate property
Induction and co-induction: The alternating bit protocol

A non-terminating function: The Collatz function

Missing topics

@ Consistency of LTC
e Characterization of the (co-)inductively generated predicates
@ Consistency of FOTC

Associated talks

© What proof assistant should we use?
Using Agda as a logical framework for FOTC.

https://github.com/asr/fotc
http://www1.eafit.edu.co/asicard/slides/fotc-future-work-slides.pdf
http://www1.eafit.edu.co/asicard/slides/fotc-future-work-slides.pdf

Associated talks

© What proof assistant should we use?
Using Agda as a logical framework for FOTC.

@ Can part of the job be automatic?
agda2atp: An Haskell program for proving first-order
formulae written in Agda using ATPs, via the translation of
the Agda formulae to the TPTP format.

GitHub repository: https://github.com/asr/fotc.

https://github.com/asr/fotc
http://www1.eafit.edu.co/asicard/slides/fotc-future-work-slides.pdf
http://www1.eafit.edu.co/asicard/slides/fotc-future-work-slides.pdf

Associated talks

What proof assistant should we use?
Using Agda as a logical framework for FOTC.

Can part of the job be automatic?

agda2atp: An Haskell program for proving first-order
formulae written in Agda using ATPs, via the translation of
the Agda formulae to the TPTP format.

GitHub repository: https://github.com/asr/fotc.

Future work: Theoretical, integration, and/or implementation.
See http://wwwl.eafit.edu.co/asicard/slides/
fotc-future-work-slides.pdf

https://github.com/asr/fotc
http://www1.eafit.edu.co/asicard/slides/fotc-future-work-slides.pdf
http://www1.eafit.edu.co/asicard/slides/fotc-future-work-slides.pdf

