
.

.

Verification of Functional Programs
I. First-Order Theory of Combinators

Andrés Sicard-Ramírez1

(joint work with Ana Bove2 and Peter Dybjer2)

1EAFIT University, Colombia
2Chalmers University of Technology, Sweden

Logic and Computation Seminar
EAFIT University
31 August 2012

Introduction

What if we have written a Haskell-like program and we want to
verify it?

...1 What programming logic should we use?

...2 What proof assistant should we use?

...3 Can part of the job be automatic?

Introduction

What if we have written a Haskell-like program and we want to
verify it?

...1 What programming logic should we use?

A notion of program

tthhhhh
hhhh

hhhh
hhhh

h

��

A notion of specification
(logic with equality + induction)

44hhhhhhhhhhhhhhhhhh

**TTT
TTTT

TTTT
TTTT

T

A notion of satisfaction
(inference rules)

jjTTTTTTTTTTTTTTTT

OO

...2 What proof assistant should we use?

...3 Can part of the job be automatic?

Introduction

What if we have written a Haskell-like program and we want to
verify it?

...1 What programming logic should we use?

...2 What proof assistant should we use?

...3 Can part of the job be automatic?

Introduction

What if we have written a Haskell-like program and we want to
verify it?

...1 What programming logic should we use?

...2 What proof assistant should we use?

...3 Can part of the job be automatic?
Can we use automatic theorem provers for first-order logic
(ATPs)?
Can we use Satisfiability Modulo Theories (SMT) solvers?
Can we use inductive theorem provers (ITPs)?

First-Order Theory of Combinators

What programming logic should we use?

We propose the First-Order Theory of Combinators.

.Features:..

.

...1 general recursion (structural, non-structural, nested and
higher-order recursion),

...2 higher-order functions,

...3 partial and total correctness, and

...4 inductive and coinductive predicates.

First-Order Theory of Combinators

What programming logic should we use?

We propose the First-Order Theory of Combinators.
.Features:..

.

...1 general recursion (structural, non-structural, nested and
higher-order recursion),

...2 higher-order functions,

...3 partial and total correctness, and

...4 inductive and coinductive predicates.

First-Order Theory of Combinators

What programming logic should we use?

We propose the First-Order Theory of Combinators.
.Features:..

.

...1 general recursion (structural, non-structural, nested and
higher-order recursion),

...2 higher-order functions,

...3 partial and total correctness, and

...4 inductive and coinductive predicates.

First-Order Theory of Combinators

What programming logic should we use?

We propose the First-Order Theory of Combinators.
.Features:..

.

...1 general recursion (structural, non-structural, nested and
higher-order recursion),

...2 higher-order functions,

...3 partial and total correctness, and

...4 inductive and coinductive predicates.

First-Order Theory of Combinators

What programming logic should we use?

We propose the First-Order Theory of Combinators.
.Features:..

.

...1 general recursion (structural, non-structural, nested and
higher-order recursion),

...2 higher-order functions,

...3 partial and total correctness, and

...4 inductive and coinductive predicates.

Haskell: A very large language

Haskell

(represented by a data type with hundreds of constructors)

full translation

��
Core

(typed 𝜆-calculus with few syntactic forms)

Source: Marlow and Peyton-Jones (2012). “The Glasgow Haskell
Compiler”.

Plotkin’s PCF: A “simple” functional programming
language

𝖳𝗒𝗉𝖾𝗌 ∋ 𝜎 ∶∶= 𝗇𝖺𝗍 natural numbers
∣ 𝜎 → 𝜎 function type

𝖳𝖾𝗋𝗆𝗌 ∋ 𝑡 ∶∶= 𝑥 variable
∣ 𝑡 𝑡 application
∣ 𝜆𝑥 ∶ 𝜎. 𝑡 𝜆-abstraction
∣ 𝖿𝗂𝗑𝜎(𝑡) fixed-point operator
∣ 0 zero
∣ 𝗌𝗎𝖼𝖼(𝑡) succesor function
∣ 𝗉𝗋𝖾𝖽(𝑡) predecessor function
∣ 𝗂𝗌𝗓𝖾𝗋𝗈(𝑡, 𝑡, 𝑡) conditional

Source: Plotkin (1977). “LCF Considered as a Programming
Language”.

A Logical Theory of Constructions (LTC) for type-free PCF

.
History (very incomplete):..

.

...1 Aczel (1977). “The Strength of MartinLöf’s Intuitionistic
Type Theory with One Universe”.

...2 Dybjer (1985). “Program Verification in a Logical Theory of
Constructions”.

...3 Bove, Dybjer and Sicard-Ramírez (2009). “Embedding a
Logical Theory of Constructions in Agda”.

A Logical Theory of Constructions (LTC) for type-free PCF

.
History (very incomplete):..

.

...1 Aczel (1977). “The Strength of MartinLöf’s Intuitionistic
Type Theory with One Universe”.

...2 Dybjer (1985). “Program Verification in a Logical Theory of
Constructions”.

...3 Bove, Dybjer and Sicard-Ramírez (2009). “Embedding a
Logical Theory of Constructions in Agda”.

A Logical Theory of Constructions (LTC) for type-free PCF

.
History (very incomplete):..

.

...1 Aczel (1977). “The Strength of MartinLöf’s Intuitionistic
Type Theory with One Universe”.

...2 Dybjer (1985). “Program Verification in a Logical Theory of
Constructions”.

...3 Bove, Dybjer and Sicard-Ramírez (2009). “Embedding a
Logical Theory of Constructions in Agda”.

LTC: Terms

𝖳𝖾𝗋𝗆𝗌 ∋ 𝑡 ∶∶= 𝑥 variable
∣ 𝑡 · 𝑡 application
∣ 𝜆𝑥. 𝑡 𝜆-abstraction
∣ 𝖿𝗂𝗑 𝑥. 𝑡 fixed-point operator
∣ 𝗍𝗋𝗎𝖾 ∣ 𝖿𝖺𝗅𝗌𝖾 ∣ 𝗂𝖿 partial Boolean constants
∣ 0 ∣ 𝗌𝗎𝖼𝖼 ∣ 𝗉𝗋𝖾𝖽 ∣ 𝗂𝗌𝗓𝖾𝗋𝗈 partial natural number constants
∣ 𝗅𝗈𝗈𝗉 looping constant

LTC: Formulae

𝖥𝗈𝗋𝗆𝗎𝗅𝖺𝖾 ∋ 𝐴 ∶∶= ⊤ ∣ ⊥ truth, falsehood
∣ 𝐴 ⇒ 𝐴 ∣ 𝐴 ∧ 𝐴 ∣ 𝐴 ∨ 𝐴 binary logical connectives
∣ ∀𝑥.𝐴 ∣ ∃𝑥.𝐴 quantifiers
∣ 𝑡 = 𝑡 equality
∣ 𝑃 (𝑡, … , 𝑡) predicate
∣ 𝐵𝑜𝑜𝑙(𝑡) total Booleans predicate
∣ 𝑁(𝑡) total natural numbers

predicate

LTC: Inference rules

.Axioms and axiom schemata of LTC..

.

...1 Axioms for the intuitionistic logical constants

...2 Conversion rules for the combinators

...3 Discrimination rules

...4 Introduction and elimination rules for 𝐵𝑜𝑜𝑙 and 𝑁

LTC: Conversion and discrimination rules
.Conversion rules for the combinators..

.

∀𝑡 𝑡′. 𝗂𝖿 · 𝗍𝗋𝗎𝖾 · 𝑡 · 𝑡′ = 𝑡,
∀𝑡 𝑡′. 𝗂𝖿 · 𝖿𝖺𝗅𝗌𝖾 · 𝑡 · 𝑡′ = 𝑡′,

𝗉𝗋𝖾𝖽 · 0 = 0,
∀𝑡. 𝗉𝗋𝖾𝖽 · (𝗌𝗎𝖼𝖼 · 𝑡) = 𝑡,

𝗂𝗌𝗓𝖾𝗋𝗈 · 0 = 𝗍𝗋𝗎𝖾,
∀𝑡. 𝗂𝗌𝗓𝖾𝗋𝗈 · (𝗌𝗎𝖼𝖼 · 𝑡) = 𝖿𝖺𝗅𝗌𝖾,

𝗅𝗈𝗈𝗉 = 𝗅𝗈𝗈𝗉,
∀𝑡 𝑡′. (𝜆𝑥. 𝑡) · 𝑡′ = 𝑡[𝑥 ∶= 𝑡′],

∀𝑡. 𝖿𝗂𝗑 𝑥. 𝑡 = 𝑡[𝑥 ∶= 𝖿𝗂𝗑 𝑥. 𝑡],

.Discrimination rules..

.
𝗍𝗋𝗎𝖾 ≠ 𝖿𝖺𝗅𝗌𝖾,

∀𝑡. 0 ≠ 𝗌𝗎𝖼𝖼 · 𝑡.

LTC: Conversion and discrimination rules
.Conversion rules for the combinators..

.

∀𝑡 𝑡′. 𝗂𝖿 · 𝗍𝗋𝗎𝖾 · 𝑡 · 𝑡′ = 𝑡,
∀𝑡 𝑡′. 𝗂𝖿 · 𝖿𝖺𝗅𝗌𝖾 · 𝑡 · 𝑡′ = 𝑡′,

𝗉𝗋𝖾𝖽 · 0 = 0,
∀𝑡. 𝗉𝗋𝖾𝖽 · (𝗌𝗎𝖼𝖼 · 𝑡) = 𝑡,

𝗂𝗌𝗓𝖾𝗋𝗈 · 0 = 𝗍𝗋𝗎𝖾,
∀𝑡. 𝗂𝗌𝗓𝖾𝗋𝗈 · (𝗌𝗎𝖼𝖼 · 𝑡) = 𝖿𝖺𝗅𝗌𝖾,

𝗅𝗈𝗈𝗉 = 𝗅𝗈𝗈𝗉,
∀𝑡 𝑡′. (𝜆𝑥. 𝑡) · 𝑡′ = 𝑡[𝑥 ∶= 𝑡′],

∀𝑡. 𝖿𝗂𝗑 𝑥. 𝑡 = 𝑡[𝑥 ∶= 𝖿𝗂𝗑 𝑥. 𝑡],
.Discrimination rules..

.
𝗍𝗋𝗎𝖾 ≠ 𝖿𝖺𝗅𝗌𝖾,

∀𝑡. 0 ≠ 𝗌𝗎𝖼𝖼 · 𝑡.

LTC: Rules for 𝐵𝑜𝑜𝑙

Introduction and elimination (expressing proof by case analysis on
total Boolean values) rules for 𝐵𝑜𝑜𝑙:

𝐵𝑜𝑜𝑙(𝗍𝗋𝗎𝖾) 𝐵𝑜𝑜𝑙(𝖿𝖺𝗅𝗌𝖾)

𝐵𝑜𝑜𝑙(𝑡) 𝐴(𝗍𝗋𝗎𝖾) 𝐴(𝖿𝖺𝗅𝗌𝖾)
𝐴(𝑡)

LTC: Rules for 𝑁

Introduction and elimination (expressing proof by mathematical
induction) rules for 𝑁 :

𝑁(0)
𝑁(𝑡)

𝑁(𝗌𝗎𝖼𝖼 · 𝑡)

𝑁(𝑡) 𝐴(0)

[𝐴(𝑡)]
⋮

𝐴(𝗌𝗎𝖼𝖼 · 𝑡)
𝐴(𝑡)

First-Order Theory of Combinators (FOTC)

Source: Bove, Dybjer and Sicard-Ramírez (2012). “Combining
Interactive and Automatic Reasoning in First Order Theories of
Functional Programs”.

First stage: A first-order theory

Second stage: Add of new inductively defined predicates
Third stage: Add of co-inductively defined predicates

First-Order Theory of Combinators (FOTC)

Source: Bove, Dybjer and Sicard-Ramírez (2012). “Combining
Interactive and Automatic Reasoning in First Order Theories of
Functional Programs”.

First stage: A first-order theory
Second stage: Add of new inductively defined predicates

Third stage: Add of co-inductively defined predicates

First-Order Theory of Combinators (FOTC)

Source: Bove, Dybjer and Sicard-Ramírez (2012). “Combining
Interactive and Automatic Reasoning in First Order Theories of
Functional Programs”.

First stage: A first-order theory
Second stage: Add of new inductively defined predicates
Third stage: Add of co-inductively defined predicates

FOTC: A first-order theory

.Lambda-lifting..

.

Add a new function symbol for each recursive function definition of
the form

𝑓 𝑥1 ⋯ 𝑥𝑛 = 𝑒[𝑓, 𝑥1, … , 𝑥𝑛],
instead of use the 𝜆-abstraction and the fixed-point operator from
LTC.

FOTC: Terms

The grammar for the terms of FOTC is now first order:

𝖳𝖾𝗋𝗆𝗌 ∋ 𝑡 ∶∶= 𝑥 variable
∣ 𝑡 · 𝑡 application
∣ 𝗍𝗋𝗎𝖾 ∣ 𝖿𝖺𝗅𝗌𝖾 ∣ 𝗂𝖿 partial Boolean constants
∣ 0 ∣ 𝗌𝗎𝖼𝖼 ∣ 𝗉𝗋𝖾𝖽 ∣ 𝗂𝗌𝗓𝖾𝗋𝗈 partial natural number constants
∣ 𝗅𝗈𝗈𝗉 looping combinator
∣ 𝑓 function

where 𝑓 ranges over new combinators defined by recursive
equations.

FOTC: Add of new inductively defined predicates

.Example..

.

𝐸𝑣𝑒𝑛(0)
𝐸𝑣𝑒𝑛(𝑡)

𝐸𝑣𝑒𝑛(𝗌𝗎𝖼𝖼 · 𝗌𝗎𝖼𝖼 · 𝑡)

𝐸𝑣𝑒𝑛(𝑡) 𝐴(0)

[𝐴(𝑡)]
⋮

𝐴(𝗌𝗎𝖼𝖼 · 𝗌𝗎𝖼𝖼 · 𝑡)
𝐴(𝑡)

FOTC: Add of co-inductively defined predicates

.Methodology:..

.

The inductively defined predicates are defined as the least
fixed-point of the operator associated with their introduction
rules.

The co-inductively defined predicates are defined as the
greatest fixed-point of the operator associated with their
introduction rules.

FOTC: Add of co-inductively defined predicates

.Methodology:..

.

The inductively defined predicates are defined as the least
fixed-point of the operator associated with their introduction
rules.
The co-inductively defined predicates are defined as the
greatest fixed-point of the operator associated with their
introduction rules.

Examples of verification

Non-structural recursion: Program that computes the greatest
common divisor of two natural numbers using Euclid’s
algorithm
Nested recursion: Properties and termination of McCarthy91
function
Higher-order recursion: The mirror function for Rose trees
Co-recursive function: The map-iterate property
Induction and co-induction: The alternating bit protocol
A non-terminating function: The Collatz function

Missing topics

Consistency of LTC
Characterization of the (co-)inductively generated predicates
Consistency of FOTC

Associated talks

...1 What proof assistant should we use?
Using Agda as a logical framework for FOTC.

...2 Can part of the job be automatic?
agda2atp: An Haskell program for proving first-order
formulae written in Agda using ATPs, via the translation of
the Agda formulae to the TPTP format.

GitHub repository: https://github.com/asr/fotc.
...3 Future work: Theoretical, integration, and/or implementation.

See http://www1.eafit.edu.co/asicard/slides/
fotc-future-work-slides.pdf

https://github.com/asr/fotc
http://www1.eafit.edu.co/asicard/slides/fotc-future-work-slides.pdf
http://www1.eafit.edu.co/asicard/slides/fotc-future-work-slides.pdf

Associated talks

...1 What proof assistant should we use?
Using Agda as a logical framework for FOTC.

...2 Can part of the job be automatic?
agda2atp: An Haskell program for proving first-order
formulae written in Agda using ATPs, via the translation of
the Agda formulae to the TPTP format.

GitHub repository: https://github.com/asr/fotc.

...3 Future work: Theoretical, integration, and/or implementation.
See http://www1.eafit.edu.co/asicard/slides/
fotc-future-work-slides.pdf

https://github.com/asr/fotc
http://www1.eafit.edu.co/asicard/slides/fotc-future-work-slides.pdf
http://www1.eafit.edu.co/asicard/slides/fotc-future-work-slides.pdf

Associated talks

...1 What proof assistant should we use?
Using Agda as a logical framework for FOTC.

...2 Can part of the job be automatic?
agda2atp: An Haskell program for proving first-order
formulae written in Agda using ATPs, via the translation of
the Agda formulae to the TPTP format.

GitHub repository: https://github.com/asr/fotc.
...3 Future work: Theoretical, integration, and/or implementation.

See http://www1.eafit.edu.co/asicard/slides/
fotc-future-work-slides.pdf

https://github.com/asr/fotc
http://www1.eafit.edu.co/asicard/slides/fotc-future-work-slides.pdf
http://www1.eafit.edu.co/asicard/slides/fotc-future-work-slides.pdf

