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What if we have written a Haskell-like program and we want to
verify it?

@ What programming logic should we use?

@ What proof assistant should we use?

© Can part of the job be automatic?

e Can we use automatic theorem provers for first-order logic
(ATPs)?

o Can we use Satisfiability Modulo Theories (SMT) solvers?

o Can we use inductive theorem provers (ITPs)?
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First-Order Theory of Combinators

What programming logic should we use?

We propose the First-Order Theory of Combinators.

Features:

© general recursion (structural, non-structural, nested and
higher-order recursion),

@ higher-order functions,
© partial and total correctness, and

@ inductive and coinductive predicates.



Haskell: A very large language

Haskell

(represented by a data type with hundreds of constructors)

- full translation

Core

(typed A-calculus with few syntactic forms)

Source: Marlow and Peyton-Jones (2012). “The Glasgow Haskell
Compiler”.



Plotkin's PCF: A “simple” functional programming
language

Types 3 0 ::= nat natural numbers
|lo—o function type
Terms >t ===x variable
| tt application
| Ax:0o.t A-abstraction
| fix,,(t) fixed-point operator
| 0 zero
| succ(t) succesor function
| pred(t) predecessor function
| iszero(t,t,t) conditional

Source: Plotkin (1977). “LCF Considered as a Programming
Language”.



A Logical Theory of Constructions (LTC) for type-free PCF

History (very incomplete):
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A Logical Theory of Constructions (LTC) for type-free PCF

History (very incomplete):
@ Aczel (1977). “The Strength of MartinL6f's Intuitionistic
Type Theory with One Universe".

@ Dybjer (1985). "Program Verification in a Logical Theory of
Constructions”.

© Bove, Dybjer and Sicard-Ramirez (2009). “Embedding a
Logical Theory of Constructions in Agda’.



LTC: Terms

Terms 2t ==z
-t
| Ax. t
| fix z. ¢
| true | false | if
| 0 | succ | pred | iszero

| loop

variable

application

A-abstraction

fixed-point operator

partial Boolean constants

partial natural number constants

looping constant



LTC: Formulae

Formulae> A==T | L
| A= A|ANA|AVA

| Vz.A | Jx. A
=1t

| P(t,...,t)

| Bool(t)

| N (#)

truth, falsehood

binary logical connectives
quantifiers

equality

predicate

total Booleans predicate
total natural numbers

predicate



LTC: Inference rules

Axioms and axiom schemata of LTC
@ Axioms for the intuitionistic logical constants
@ Conversion rules for the combinators
© Discrimination rules

@ |Introduction and elimination rules for Bool and N



LTC: Conversion and discrimination rules

Conversion rules for the combinators

Vit if -true-t -t =t,
Vtt'.if -false-t-t' =1t,
pred - 0 = 0,
Vt. pred - (succ - t) = t,

iszero - 0 = true,

Vt. iszero - (succ - t) = false,

loop = loop,

Vit Az t) -t = t[x =],
Vt. fix x. t = t[z = fix x. t],



LTC: Conversion and discrimination rules

Conversion rules for the combinators

Vit if -true-t -t =t,
Vtt'.if -false-t-t' =1t,
pred - 0 = 0,
Vt. pred - (succ-t) =t,

iszero - 0 = true,

Vt. iszero - (succ - t) = false,

loop = loop,

Vit Az t) -t = t[x =],
Vt. fix x. t = t[z = fix x. t],

Discrimination rules

true # false,
Vt. 0 # succ - t.



LTC: Rules for Bool

Introduction and elimination (expressing proof by case analysis on
total Boolean values) rules for Bool:

Bool(true) Bool(false)

Bool(t) A(true) A(false)
A(t)




LTC: Rules for V

Introduction and elimination (expressing proof by mathematical
induction) rules for V:
N{(t)
N(0) N (succ - t)




First-Order Theory of Combinators (FOTC)

Source: Bove, Dybjer and Sicard-Ramirez (2012). “Combining
Interactive and Automatic Reasoning in First Order Theories of
Functional Programs”.

o First stage: A first-order theory
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Source: Bove, Dybjer and Sicard-Ramirez (2012). “Combining
Interactive and Automatic Reasoning in First Order Theories of
Functional Programs”.

o First stage: A first-order theory

@ Second stage: Add of new inductively defined predicates

@ Third stage: Add of co-inductively defined predicates



FOTC: A first-order theory

Lambda-lifting
Add a new function symbol for each recursive function definition of
the form

Jag oz, = e[fv Ly eee 7I7J:

instead of use the \-abstraction and the fixed-point operator from
LTC.



FOTC: Terms

The grammar for the terms of FOTC is now first order:

Terms >t =1 variable
| t-t application
| true | false | if partial Boolean constants

| 0| succ | pred | iszero partial natural number constants
| loop looping combinator

| f function

where f ranges over new combinators defined by recursive
equations.



FOTC: Add of new inductively defined predicates

Example

Even(t)
Even(0) Even(succ - succ - t)

[A@)]

Even(t) A(0) A(succ - succ - t)




FOTC: Add of co-inductively defined predicates

Methodology:

@ The inductively defined predicates are defined as the least
fixed-point of the operator associated with their introduction
rules.



FOTC: Add of co-inductively defined predicates

Methodology:

@ The inductively defined predicates are defined as the least
fixed-point of the operator associated with their introduction
rules.

@ The co-inductively defined predicates are defined as the
greatest fixed-point of the operator associated with their
introduction rules.



Examples of verification

@ Non-structural recursion: Program that computes the greatest
common divisor of two natural numbers using Euclid’s
algorithm

@ Nested recursion: Properties and termination of McCarthy91
function

Higher-order recursion: The mirror function for Rose trees
Co-recursive function: The map-iterate property
Induction and co-induction: The alternating bit protocol

A non-terminating function: The Collatz function



Missing topics

@ Consistency of LTC
e Characterization of the (co-)inductively generated predicates
@ Consistency of FOTC



Associated talks

© What proof assistant should we use?
Using Agda as a logical framework for FOTC.
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Associated talks

What proof assistant should we use?
Using Agda as a logical framework for FOTC.

Can part of the job be automatic?

agda2atp: An Haskell program for proving first-order
formulae written in Agda using ATPs, via the translation of
the Agda formulae to the TPTP format.

GitHub repository: https://github.com/asr/fotc.

Future work: Theoretical, integration, and/or implementation.
See http://wwwl.eafit.edu.co/asicard/slides/
fotc-future-work-slides.pdf
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