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Abstract

Interactive proof assistants based on higher-order Logics (e.qg.
Agda, Coq) usually Lack a good support of proof automation
(even in the first-order world). We have been developing a
tool in which Agda users obtain support from first-order auto-
matic theorem provers (ATPs) such as Equinox and Eprover.
In our current approach, the ATPs are called by our tool
on users’ marked conjectures after the Agda type-checking is
finished.
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Overview: the agdaZatp tool
Goal: Agda users obtain support from first-order ATPs

Features:

e Agda: The high Level proofs steps (introduction of hypoth-
esis, case analysis, induction steps, etc.)

e ATPs: The *“trivial” proofs steps
e T he ATPs are called on users’ marked conjectures

e The ATPs are called after the Agda type-checking is fin-
ished




Overview: the agda2atp tool (cont.)
What we did?

1. To modify Agda to accept the users’ marked conjectures

2. To translate the required Agda internal types to FOL for-
mulas

3. To translLate the FOL formulas to ATPS' inputs




Proofs examples

We will see proofs by
induction, pattern matching and using equational reasoning.




Users’ marked conjectures
We added a new built-in pragma to Agda:

{-# ATP axiom myAxiom #-}

{-# ATP definition myDefinition #-}

{-# ATP hint myHypothesis #-}

{-# ATP prove myPostulate hl h2 ... hn #-}
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We will see the previous
proofs using the ATP pragma.




T he translation algorithm
Source: Agda internal types (simplified)

Types> T U =51t
Sorts © S .= Sety | Set1 | ...
Terms Dt =Varz |LamXxz.t | Pi T (Ax.U) | Fun T U

| Def dt* | Conctf|Sort S| ...




T he translation algorithm
Source: Agda internal types (simplified)

Types> T U =51t
Sorts © S .= Sety | Set1 | ...
Terms Dt =Varz |LamXxz.t | Pi T (Ax.U) | Fun T U

| Def dt* | Conctf|Sort S| ...

Target: First-order predicate Logic with equality

Terms t ::= FOLVar z | FOLFun f t*
Formulas F::=T | L|—-F|FAF|FVF|F=>F|F&F
| Vo.F | 3. F | Predicatept* |t =t




The translation algorithm (cont.)

Algorithm 0.1: typeToFormula(l' :: Env, T :: Type)

case T
(Setp, t) — termToFormula(lT, t)
of < (Seti,t) — termToFormula(l, t)
others — fail




The translation algorithm (cont.)

Algorithm 0.2: termToFormula(l' :: Env,t :: Term)

case t

of <

else fail

( ifxecl
Var T — then return (Predicate z [ ])

\

T’ < freshVar(I")
Lam Ax.t — < f < termToFormula(lr U {z’}, t)
return (f)
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Algorithm 0.3: termToFormula(

case t
/

case T

PiT (Ax.U) — <

of

\others —

. Env,t:: Term)

(x’ < freshVar(IN)
fo < typeToFormula(lr U {z'}, U)

Sety

(Seto, Def d) — {return (VT f2)

- The variable x is a pt

(Setg, Def d t1,...,tn) = < f1 < typeToFormula(l
return (f1 = f2)
Set;

(Set,, Sort 5) — {return (2)

fail
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Algorithm 0.4: termToFormula(l’ :: Env, t :: Term)

case t

of

\

/

f1 < typeToFormula(l, T)
Fun T U — < fo < typeToFormula(l', U)

return (f1 = f2)

ifde {T,L}
Defd[] — then return (d)
else return (Predicated [])

Def a [t] — <
else <

then f < termToFormula(lr, t); return (= f)

(if d € {VD, 3D}
f + termToFormula(l, t)
then < z < freshVar(lN);
return ((V/3) x.f)

clse @ +— termToFOLTerm(I", t)
L return (Predicate d [a])
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Algorithm 0.5: termToFormula(l’ :: Env, t :: Term)

case t

( (ifd € {A\,V, =, &}
f1 < termToFormula(l’, t1)

then < f2 < termToFormula(l, t,)
return (f1 d f2)

Def d [t1, 22] — < ‘al + termToFOLTerm(T, t;)

a2 < termToFOLTerm(I, t>)

of < else < If (d == =)

then return (a1 = a,)

else return (Predicate d [a1, a3])

\ \
a; < termToFormula(l, t;)
Def a [t1,...,tn] — {return (Predicate d [a1, ..., an])

 others — fail
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The translation algorithm (cont.)

Algorithm 0.6: termToFOLTerm(I" :: Env,t :: Term)

case t

of

where

\

( ifzerl
Var T — then return (FOLVar )
else fail

Conc [ti,...,tn] Or Def d [t1,...,tn] — appArgs(l,c/a, [t1, ...

 others — fail

appArgs :: Env —+ Name — [Term] — FOLTerm
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Implementation

Modification of the development version of Agda:

e Obvious modifications (lexer, parser, errors, etc.)
® To change the Agda internal signature

15



Implementation

Modification of the development version of Agda:

e Obvious modifications (lexer, parser, errors, etc.)
® To change the Agda internal signature

The external tool agdaZatp:

e Agda has a Lot features (implicit arguments, 7-conversion
rules, where clauses, etc.)

e Using Agda as an Haskell Library (Agda has not a stable
API)

e Source: Agda interface files (*.agdai)
e Target: TPTP
e AT Ps supported: Equinox, Eprover and Metis
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Related work

External, internal or mix approach
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Related work

External, internal or mix approach

e Andreas Abel, Thierry Coquand and ULf Norell (2005)

FOL plug-in to the Gandalf system for a previous and ex-
perimental version of Agda called AgdalLight (external ap-
proach)

e Makoto Takeyama (2009)

Integration of Agda with external tools using Agda ca-
pability to generate an executable Haskell program (mix
approach)

e Anton Setzer and Karim Kanso (2010)

Combination of automated and interactive theorem proving
using a built-in pragma (mix approach)
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