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Zeno (An Automated Prover for Properties of Recursive Data Structures)

Description
Automatic inductive theorem prover for proving Haskell properties

The tool can discover necessary auxiliary theorems

The proofs can be verified in Isabelle

From a test suit for IsaPlanner, Zeno can prove more properties than IsaPlanner and
ACL2s (ACL2 sedan)

Zeno 2/30



Zeno (An Automated Prover for Properties of Recursive Data Structures)

Description
Automatic inductive theorem prover for proving Haskell properties

The tool can discover necessary auxiliary theorems

The proofs can be verified in Isabelle

From a test suit for IsaPlanner, Zeno can prove more properties than IsaPlanner and
ACL2s (ACL2 sedan)

Zeno 3/30



Zeno (An Automated Prover for Properties of Recursive Data Structures)

Description
Automatic inductive theorem prover for proving Haskell properties

The tool can discover necessary auxiliary theorems

The proofs can be verified in Isabelle

From a test suit for IsaPlanner, Zeno can prove more properties than IsaPlanner and
ACL2s (ACL2 sedan)

Zeno 4/30



Zeno (An Automated Prover for Properties of Recursive Data Structures)

Description
Automatic inductive theorem prover for proving Haskell properties

The tool can discover necessary auxiliary theorems

The proofs can be verified in Isabelle

From a test suit for IsaPlanner, Zeno can prove more properties than IsaPlanner and
ACL2s (ACL2 sedan)

Zeno 5/30



Zeno

Demo
See source code in the course web page.

Presentation (slides)
Sophia Drossopoulou. Zeno. A theorem prover for inductively defined properties (IFIP WG2.1,
2011) (https://wp.doc.ic.ac.uk/sd/)

Limitations
Zeno works only with terminating functions and total and finite values.
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Zeno

Material
Sonnex, William, Drossopoulou, Sophia and Eisenbach, Susan [2012]. Zeno: An
Automated Prover for Properties of Recursive Data Structures. In: Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2012). Ed. by Flanagan, Cormac
and König, Barbara. Vol. 7214. Lecture Notes in Computer Science. Springer,
pp. 407–421

Sonnex, William, Drossopoulou, Sophia and Eisenbach, Susan [Feb. 2011]. Zeno: A Tool
for the Automatic Verification of Algebraic Properties of Functional Programs. Tech. rep.
Imperial College London.

Web
http://www.haskell.org/haskellwiki/Zeno
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Zeno

Installation (Zeno 0.2.0.1 tested with GHC 7.0.4)
$ cabal unpack zeno

$ cd zeno-0.2.0.1

# Remove from zeno.cabal:
if impl(ghc >= 7)

ghc-options: -with-rtsopts="-N"

$ cabal install

Remark
For installing/using different versions of GHC the stow command is your friend (see http:
//www1.eafit.edu.co/asr/tips-and-tricks.html).
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HipSpec (Automating Inductive Proofs of Program Properties)

HipSpec [Claessen, Johansson, Rosén and Smallbone 2012] is based on:
Hip [Rosén 2012]
QuickSpec [Claessen, Smallbone and Hughes 2010]
Theorem provers (e.g. E, Vampire and Z3)
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Hip (Haskell Inductive Prover)

Automatically prove properties about Haskell programs including partial and potentially
infinite values.

Subset of Haskell → intermediate language → first-order logic

Induction techniques
Definitional equality
Structural induction
Scott’s fixed-point induction
Approximation lemma

The higher-order (co)-induction principles are handled at the meta-level.

The first-order reasoning is handled by off-the-shelf theorem provers (E, Prover9, SPASS,
Vampire and Z3).

Hip 13/30



Hip (Haskell Inductive Prover)

Automatically prove properties about Haskell programs including partial and potentially
infinite values.

Subset of Haskell → intermediate language → first-order logic

Induction techniques
Definitional equality
Structural induction
Scott’s fixed-point induction
Approximation lemma

The higher-order (co)-induction principles are handled at the meta-level.

The first-order reasoning is handled by off-the-shelf theorem provers (E, Prover9, SPASS,
Vampire and Z3).

Hip 14/30



Hip (Haskell Inductive Prover)

Automatically prove properties about Haskell programs including partial and potentially
infinite values.

Subset of Haskell → intermediate language → first-order logic

Induction techniques
Definitional equality
Structural induction
Scott’s fixed-point induction
Approximation lemma

The higher-order (co)-induction principles are handled at the meta-level.

The first-order reasoning is handled by off-the-shelf theorem provers (E, Prover9, SPASS,
Vampire and Z3).

Hip 15/30



Hip (Haskell Inductive Prover)

Automatically prove properties about Haskell programs including partial and potentially
infinite values.

Subset of Haskell → intermediate language → first-order logic

Induction techniques
Definitional equality
Structural induction
Scott’s fixed-point induction
Approximation lemma

The higher-order (co)-induction principles are handled at the meta-level.

The first-order reasoning is handled by off-the-shelf theorem provers (E, Prover9, SPASS,
Vampire and Z3).

Hip 16/30



Hip (Haskell Inductive Prover)

Automatically prove properties about Haskell programs including partial and potentially
infinite values.

Subset of Haskell → intermediate language → first-order logic

Induction techniques
Definitional equality
Structural induction
Scott’s fixed-point induction
Approximation lemma

The higher-order (co)-induction principles are handled at the meta-level.

The first-order reasoning is handled by off-the-shelf theorem provers (E, Prover9, SPASS,
Vampire and Z3).

Hip 17/30



Hip

Data type and equality
data Prop a = a :=: a

(=:=) :: a -> a -> Prop a
(=:=) = (:=:)
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Hip - Definitional Equality

Example
From combinatory logic (see, e.g., Hindley and Seldin [2008]).

k :: a -> b -> a
k x _ = x

s :: (a -> b -> c) -> (a -> b) -> a -> c
s f g x = f x (g x)

id :: a -> a
id x = x

prop_skk_id :: Prop (a -> a)
prop_skk_id = s k k =:= id
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Hip - Structural Induction

Example
data N = Z | S N

Structural recursion on total and finite values
𝑃 Z ∀𝑥. 𝑃 𝑥 ⇒ 𝑃(S 𝑥)
∀𝑥. 𝑥 total and finite ⇒ 𝑃 𝑥

Structural recursion on partial and potentially infinite values
𝑃 ⊥ 𝑃 Z ∀𝑥. 𝑃 𝑥 ⇒ 𝑃(S 𝑥) 𝑃 admissible

∀𝑥.𝑃 𝑥
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Hip

Limitations
Hip cannot use auxiliary theorems and theories.

Installation
Hip is now developed as a part of the HipSpec, so it is not stand-alone maintained.
You can install Hip from https://github.com/asr/hip using GHC 7.6.3.
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