Andrés Sicard-Ramirez

EAFIT University

Semester 2014-1

Zeno (An Automated Prover for Properties of Recursive Data Structures)

Description
@ Automatic inductive theorem prover for proving Haskell properties

Zeno 2/30

Zeno (An Automated Prover for Properties of Recursive Data Structures)

Description
@ Automatic inductive theorem prover for proving Haskell properties

@ The tool can discover necessary auxiliary theorems

Zeno 3/30

Zeno (An Automated Prover for Properties of Recursive Data Structures)

Description
@ Automatic inductive theorem prover for proving Haskell properties

@ The tool can discover necessary auxiliary theorems

@ The proofs can be verified in Isabelle

Zeno 4/30

Zeno (An Automated Prover for Properties of Recursive Data Structures)

Description
@ Automatic inductive theorem prover for proving Haskell properties

@ The tool can discover necessary auxiliary theorems
@ The proofs can be verified in Isabelle

@ From a test suit for IsaPlanner, Zeno can prove more properties than IsaPlanner and
ACL2s (ACL2 sedan)

Zeno 5/30

Demo
See source code in the course web page.

https://wp.doc.ic.ac.uk/sd/

Zeno

Demo

See source code in the course web page.

Presentation (slides)

Sophia Drossopoulou. Zeno. A theorem prover for inductively defined properties (IFIP WG2.1,
2011) (https://wp.doc.ic.ac.uk/sd/)

Zeno 7/30

https://wp.doc.ic.ac.uk/sd/

Zeno

Demo

See source code in the course web page.

Presentation (slides)

Sophia Drossopoulou. Zeno. A theorem prover for inductively defined properties (IFIP WG2.1,
2011) (https://wp.doc.ic.ac.uk/sd/)

Limitations

Zeno works only with terminating functions and total and finite values.

Zeno 8/30

https://wp.doc.ic.ac.uk/sd/

Zeno

Material

@ Sonnex, William, Drossopoulou, Sophia and Eisenbach, Susan [2012]. Zeno: An
Automated Prover for Properties of Recursive Data Structures. In: Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2012). Ed. by Flanagan, Cormac
and Konig, Barbara. Vol. 7214. Lecture Notes in Computer Science. Springer,
pp. 407-421

@ Sonnex, William, Drossopoulou, Sophia and Eisenbach, Susan [Feb. 2011]. Zeno: A Tool
for the Automatic Verification of Algebraic Properties of Functional Programs. Tech. rep.
Imperial College London.

o Web
http://www.haskell.org/haskellwiki/Zeno

Zeno 9/30

http://www.haskell.org/haskellwiki/Zeno

Zeno

Installation (Zeno 0.2.0.1 tested with GHC 7.0.4)

Zeno

$ cabal unpack zeno
$ cd zeno-0.2.0.1

Remove from zeno.cabal:
if impl(ghc >= 7)

ghc-options: -with-rtsopts="-N"
$ cabal install

10/30

http://www1.eafit.edu.co/asr/tips-and-tricks.html
http://www1.eafit.edu.co/asr/tips-and-tricks.html

Zeno

Installation (Zeno 0.2.0.1 tested with GHC 7.0.4)
$ cabal unpack zeno
$ cd zeno-0.2.0.1

Remove from zeno.cabal:
if impl(ghc >= 7)
ghc-options: -with-rtsopts="-N"

$ cabal install

Remark

For installing/using different versions of GHC the stow command is your friend (see http:
//wwwl.eafit.edu.co/asr/tips-and-tricks.html).

Zeno 11/30

http://www1.eafit.edu.co/asr/tips-and-tricks.html
http://www1.eafit.edu.co/asr/tips-and-tricks.html

HipSpec (Automating Inductive Proofs of Program Properties)

HipSpec [Claessen, Johansson, Rosén and Smallbone 2012] is based on:
e Hip [Rosén 2012]
@ QuickSpec [Claessen, Smallbone and Hughes 2010]
@ Theorem provers (e.g. E, Vampire and Z3)

HipSpec 12/30

Hip (Haskell Inductive Prover)

o Automatically prove properties about Haskell programs including partial and potentially
infinite values.

Hip

13/30

Hip (Haskell Inductive Prover)

o Automatically prove properties about Haskell programs including partial and potentially
infinite values.

@ Subset of Haskell — intermediate language — first-order logic

Hip

14/30

Hip (Haskell Inductive Prover)
o Automatically prove properties about Haskell programs including partial and potentially
infinite values.
@ Subset of Haskell — intermediate language — first-order logic

@ Induction techniques

[

Definitional equality
Structural induction

Scott’s fixed-point induction
Approximation lemma

Hip

15/30

Hip (Haskell Inductive Prover)

(]

Automatically prove properties about Haskell programs including partial and potentially
infinite values.

Subset of Haskell — intermediate language — first-order logic

@ Induction techniques
o Definitional equality
o Structural induction
o Scott's fixed-point induction
o Approximation lemma

The higher-order (co)-induction principles are handled at the meta-level.

Hip

16/30

Hip (Haskell Inductive Prover)

o Automatically prove properties about Haskell programs including partial and potentially
infinite values.

Subset of Haskell — intermediate language — first-order logic

@ Induction techniques
o Definitional equality
o Structural induction
o Scott's fixed-point induction
o Approximation lemma

The higher-order (co)-induction principles are handled at the meta-level.

@ The first-order reasoning is handled by off-the-shelf theorem provers (E, Prover9, SPASS,
Vampire and Z3).

Hip 17/30

Data type and equality
data Prop a = a :=: a

::a ->a ->Prop a

Hip - Definitional Equality

Example

From combinatory logic (see, e.g., Hindley and Seldin [2008]).

Hip

19/30

Hip - Definitional Equality

Example

From combinatory logic (see, e.g., Hindley and Seldin [2008]).
k ::a->b ->a
k x =x

Hip

20/30

Hip - Definitional Equality

Example
From combinatory logic (see, e.g., Hindley and Seldin [2008]).
k ::a->b ->a
k x =x
s:: (a->b->c) ->(a->b) ->a->c
s fgx=1Ffx (g x)

Hip

21/30

Hip - Definitional Equality

Example
From combinatory logic (see, e.g., Hindley and Seldin [2008]).
k ::a->b ->a
k x =x
s:t(a->b->c) ->(a->b) ->a ->c
s fgx=1Ffx (g x)
id :: a -> a
id x = x

Hip

22/30

Hip - Definitional Equality

Example
From combinatory logic (see, e.g., Hindley and Seldin [2008]).
k ::a->b ->a
k x =x
s:t(a->b->c) ->(a->b) ->a ->c
s fgx=1Ffx (g x)
id :: a -> a
id x = x
prop_skk id :: Prop (a -> a)
prop skk id = s k k =:= id

Hip

23/30

Example
data N=2Z | SN

Hip - Structural Induction

Example
data N=27Z | SN

@ Structural recursion on total and finite values
Pz Ve.Px = P(Sx)

Vzx.x total and finite = P x

Hip

25/30

Hip - Structural Induction

Example
data N=27Z | SN

@ Structural recursion on total and finite values
Pz Ve.Px = P(Sx)
Vzx.x total and finite = P x

@ Structural recursion on partial and potentially infinite values

Pl Pz Ve.P x = P(S) P admissible
Vz.P x

Hip 26/30

Limitations
Hip cannot use auxiliary theorems and theories.

https://github.com/asr/hip

Hip

Hip

Limitations

Hip cannot use auxiliary theorems and theories.

Installation
Hip is now developed as a part of the HipSpec, so it is not stand-alone maintained.

You can install Hip from https://github.com/asr/hip using GHC 7.6.3.

28/30

https://github.com/asr/hip

References

Claessen, Koen, Johansson, Moa, Rosén, Dan and Smallbone, Nicholas (2012). HipSpec: Automating
Inductive Proofs of Program Properties. Workshop on Automated Theory Exploration (ATX), at
IJCAR 2012. URL: http://www.cse.chalmers.se/~jomoa/ (visited on 25/05/2013) (cit. on p. 12).

Claessen, Koen, Smallbone, Nicholas and Hughes, John (2010). QUICKSPEC: Guessing Formal Specifica-
tions Using Testing. In: Tests and Proofs (TAP 2010). Ed. by Fraser, Gordon and Garfantini, Gordon.
Vol. 6143. Lecture Notes in Computer Science. Springer, pp. 6-21 (cit. on p. 12).

Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An Introduction.
Cambridge University Press (cit. on pp. 19-23).

Rosén, Dan (2012). Proving Equational Haskell Properties Using Automated Theorem Provers. MA thesis.
University of Gothenburg (cit. on p. 12).

Sonnex, William, Drossopoulou, Sophia and Eisenbach, Susan (Feb. 2011). Zeno: A Tool for the Auto-

matic Verification of Algebraic Properties of Functional Programs. Tech. rep. Imperial College London
(cit. on p. 9).

References

29/30

http://www.cse.chalmers.se/~jomoa/

References

Sonnex, William, Drossopoulou, Sophia and Eisenbach, Susan (2012). Zeno: An Automated Prover for
Properties of Recursive Data Structures. In: Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2012). Ed. by Flanagan, Cormac and Kénig, Barbara. Vol. 7214. Lecture Notes
in Computer Science. Springer, pp. 407-421 (cit. on p. 9).

References 30/30

	Zeno
	HipSpec
	Hip
	References

