
Verification of Functional Programs
Tools

Andrés Sicard-Ramírez

EAFIT University

Semester 2014-1

Zeno (An Automated Prover for Properties of Recursive Data Structures)

Description
Automatic inductive theorem prover for proving Haskell properties

The tool can discover necessary auxiliary theorems

The proofs can be verified in Isabelle

From a test suit for IsaPlanner, Zeno can prove more properties than IsaPlanner and
ACL2s (ACL2 sedan)

Zeno 2/30

Zeno (An Automated Prover for Properties of Recursive Data Structures)

Description
Automatic inductive theorem prover for proving Haskell properties

The tool can discover necessary auxiliary theorems

The proofs can be verified in Isabelle

From a test suit for IsaPlanner, Zeno can prove more properties than IsaPlanner and
ACL2s (ACL2 sedan)

Zeno 3/30

Zeno (An Automated Prover for Properties of Recursive Data Structures)

Description
Automatic inductive theorem prover for proving Haskell properties

The tool can discover necessary auxiliary theorems

The proofs can be verified in Isabelle

From a test suit for IsaPlanner, Zeno can prove more properties than IsaPlanner and
ACL2s (ACL2 sedan)

Zeno 4/30

Zeno (An Automated Prover for Properties of Recursive Data Structures)

Description
Automatic inductive theorem prover for proving Haskell properties

The tool can discover necessary auxiliary theorems

The proofs can be verified in Isabelle

From a test suit for IsaPlanner, Zeno can prove more properties than IsaPlanner and
ACL2s (ACL2 sedan)

Zeno 5/30

Zeno

Demo
See source code in the course web page.

Presentation (slides)
Sophia Drossopoulou. Zeno. A theorem prover for inductively defined properties (IFIP WG2.1,
2011) (https://wp.doc.ic.ac.uk/sd/)

Limitations
Zeno works only with terminating functions and total and finite values.

Zeno 6/30

https://wp.doc.ic.ac.uk/sd/

Zeno

Demo
See source code in the course web page.

Presentation (slides)
Sophia Drossopoulou. Zeno. A theorem prover for inductively defined properties (IFIP WG2.1,
2011) (https://wp.doc.ic.ac.uk/sd/)

Limitations
Zeno works only with terminating functions and total and finite values.

Zeno 7/30

https://wp.doc.ic.ac.uk/sd/

Zeno

Demo
See source code in the course web page.

Presentation (slides)
Sophia Drossopoulou. Zeno. A theorem prover for inductively defined properties (IFIP WG2.1,
2011) (https://wp.doc.ic.ac.uk/sd/)

Limitations
Zeno works only with terminating functions and total and finite values.

Zeno 8/30

https://wp.doc.ic.ac.uk/sd/

Zeno

Material
Sonnex, William, Drossopoulou, Sophia and Eisenbach, Susan [2012]. Zeno: An
Automated Prover for Properties of Recursive Data Structures. In: Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2012). Ed. by Flanagan, Cormac
and König, Barbara. Vol. 7214. Lecture Notes in Computer Science. Springer,
pp. 407–421

Sonnex, William, Drossopoulou, Sophia and Eisenbach, Susan [Feb. 2011]. Zeno: A Tool
for the Automatic Verification of Algebraic Properties of Functional Programs. Tech. rep.
Imperial College London.

Web
http://www.haskell.org/haskellwiki/Zeno

Zeno 9/30

http://www.haskell.org/haskellwiki/Zeno

Zeno

Installation (Zeno 0.2.0.1 tested with GHC 7.0.4)
$ cabal unpack zeno

$ cd zeno-0.2.0.1

Remove from zeno.cabal:
if impl(ghc >= 7)

ghc-options: -with-rtsopts="-N"

$ cabal install

Remark
For installing/using different versions of GHC the stow command is your friend (see http:
//www1.eafit.edu.co/asr/tips-and-tricks.html).

Zeno 10/30

http://www1.eafit.edu.co/asr/tips-and-tricks.html
http://www1.eafit.edu.co/asr/tips-and-tricks.html

Zeno

Installation (Zeno 0.2.0.1 tested with GHC 7.0.4)
$ cabal unpack zeno

$ cd zeno-0.2.0.1

Remove from zeno.cabal:
if impl(ghc >= 7)

ghc-options: -with-rtsopts="-N"

$ cabal install

Remark
For installing/using different versions of GHC the stow command is your friend (see http:
//www1.eafit.edu.co/asr/tips-and-tricks.html).

Zeno 11/30

http://www1.eafit.edu.co/asr/tips-and-tricks.html
http://www1.eafit.edu.co/asr/tips-and-tricks.html

HipSpec (Automating Inductive Proofs of Program Properties)

HipSpec [Claessen, Johansson, Rosén and Smallbone 2012] is based on:
Hip [Rosén 2012]
QuickSpec [Claessen, Smallbone and Hughes 2010]
Theorem provers (e.g. E, Vampire and Z3)

HipSpec 12/30

Hip (Haskell Inductive Prover)

Automatically prove properties about Haskell programs including partial and potentially
infinite values.

Subset of Haskell → intermediate language → first-order logic

Induction techniques
Definitional equality
Structural induction
Scott’s fixed-point induction
Approximation lemma

The higher-order (co)-induction principles are handled at the meta-level.

The first-order reasoning is handled by off-the-shelf theorem provers (E, Prover9, SPASS,
Vampire and Z3).

Hip 13/30

Hip (Haskell Inductive Prover)

Automatically prove properties about Haskell programs including partial and potentially
infinite values.

Subset of Haskell → intermediate language → first-order logic

Induction techniques
Definitional equality
Structural induction
Scott’s fixed-point induction
Approximation lemma

The higher-order (co)-induction principles are handled at the meta-level.

The first-order reasoning is handled by off-the-shelf theorem provers (E, Prover9, SPASS,
Vampire and Z3).

Hip 14/30

Hip (Haskell Inductive Prover)

Automatically prove properties about Haskell programs including partial and potentially
infinite values.

Subset of Haskell → intermediate language → first-order logic

Induction techniques
Definitional equality
Structural induction
Scott’s fixed-point induction
Approximation lemma

The higher-order (co)-induction principles are handled at the meta-level.

The first-order reasoning is handled by off-the-shelf theorem provers (E, Prover9, SPASS,
Vampire and Z3).

Hip 15/30

Hip (Haskell Inductive Prover)

Automatically prove properties about Haskell programs including partial and potentially
infinite values.

Subset of Haskell → intermediate language → first-order logic

Induction techniques
Definitional equality
Structural induction
Scott’s fixed-point induction
Approximation lemma

The higher-order (co)-induction principles are handled at the meta-level.

The first-order reasoning is handled by off-the-shelf theorem provers (E, Prover9, SPASS,
Vampire and Z3).

Hip 16/30

Hip (Haskell Inductive Prover)

Automatically prove properties about Haskell programs including partial and potentially
infinite values.

Subset of Haskell → intermediate language → first-order logic

Induction techniques
Definitional equality
Structural induction
Scott’s fixed-point induction
Approximation lemma

The higher-order (co)-induction principles are handled at the meta-level.

The first-order reasoning is handled by off-the-shelf theorem provers (E, Prover9, SPASS,
Vampire and Z3).

Hip 17/30

Hip

Data type and equality
data Prop a = a :=: a

(=:=) :: a -> a -> Prop a
(=:=) = (:=:)

Hip 18/30

Hip - Definitional Equality

Example
From combinatory logic (see, e.g., Hindley and Seldin [2008]).

k :: a -> b -> a
k x _ = x

s :: (a -> b -> c) -> (a -> b) -> a -> c
s f g x = f x (g x)

id :: a -> a
id x = x

prop_skk_id :: Prop (a -> a)
prop_skk_id = s k k =:= id

Hip 19/30

Hip - Definitional Equality

Example
From combinatory logic (see, e.g., Hindley and Seldin [2008]).

k :: a -> b -> a
k x _ = x

s :: (a -> b -> c) -> (a -> b) -> a -> c
s f g x = f x (g x)

id :: a -> a
id x = x

prop_skk_id :: Prop (a -> a)
prop_skk_id = s k k =:= id

Hip 20/30

Hip - Definitional Equality

Example
From combinatory logic (see, e.g., Hindley and Seldin [2008]).

k :: a -> b -> a
k x _ = x

s :: (a -> b -> c) -> (a -> b) -> a -> c
s f g x = f x (g x)

id :: a -> a
id x = x

prop_skk_id :: Prop (a -> a)
prop_skk_id = s k k =:= id

Hip 21/30

Hip - Definitional Equality

Example
From combinatory logic (see, e.g., Hindley and Seldin [2008]).

k :: a -> b -> a
k x _ = x

s :: (a -> b -> c) -> (a -> b) -> a -> c
s f g x = f x (g x)

id :: a -> a
id x = x

prop_skk_id :: Prop (a -> a)
prop_skk_id = s k k =:= id

Hip 22/30

Hip - Definitional Equality

Example
From combinatory logic (see, e.g., Hindley and Seldin [2008]).

k :: a -> b -> a
k x _ = x

s :: (a -> b -> c) -> (a -> b) -> a -> c
s f g x = f x (g x)

id :: a -> a
id x = x

prop_skk_id :: Prop (a -> a)
prop_skk_id = s k k =:= id

Hip 23/30

Hip - Structural Induction

Example
data N = Z | S N

Structural recursion on total and finite values
𝑃 Z ∀𝑥. 𝑃 𝑥 ⇒ 𝑃(S 𝑥)
∀𝑥. 𝑥 total and finite ⇒ 𝑃 𝑥

Structural recursion on partial and potentially infinite values
𝑃 ⊥ 𝑃 Z ∀𝑥. 𝑃 𝑥 ⇒ 𝑃(S 𝑥) 𝑃 admissible

∀𝑥.𝑃 𝑥

Hip 24/30

Hip - Structural Induction

Example
data N = Z | S N

Structural recursion on total and finite values
𝑃 Z ∀𝑥. 𝑃 𝑥 ⇒ 𝑃(S 𝑥)
∀𝑥. 𝑥 total and finite ⇒ 𝑃 𝑥

Structural recursion on partial and potentially infinite values
𝑃 ⊥ 𝑃 Z ∀𝑥. 𝑃 𝑥 ⇒ 𝑃(S 𝑥) 𝑃 admissible

∀𝑥.𝑃 𝑥

Hip 25/30

Hip - Structural Induction

Example
data N = Z | S N

Structural recursion on total and finite values
𝑃 Z ∀𝑥. 𝑃 𝑥 ⇒ 𝑃(S 𝑥)
∀𝑥. 𝑥 total and finite ⇒ 𝑃 𝑥

Structural recursion on partial and potentially infinite values
𝑃 ⊥ 𝑃 Z ∀𝑥. 𝑃 𝑥 ⇒ 𝑃(S 𝑥) 𝑃 admissible

∀𝑥.𝑃 𝑥

Hip 26/30

Hip

Limitations
Hip cannot use auxiliary theorems and theories.

Installation
Hip is now developed as a part of the HipSpec, so it is not stand-alone maintained.
You can install Hip from https://github.com/asr/hip using GHC 7.6.3.

Hip 27/30

https://github.com/asr/hip

Hip

Limitations
Hip cannot use auxiliary theorems and theories.

Installation
Hip is now developed as a part of the HipSpec, so it is not stand-alone maintained.
You can install Hip from https://github.com/asr/hip using GHC 7.6.3.

Hip 28/30

https://github.com/asr/hip

References

Claessen, Koen, Johansson, Moa, Rosén, Dan and Smallbone, Nicholas (2012). HipSpec: Automating
Inductive Proofs of Program Properties. Workshop on Automated Theory Exploration (ATX), at
IJCAR 2012. url: http://www.cse.chalmers.se/~jomoa/ (visited on 25/05/2013) (cit. on p. 12).

Claessen, Koen, Smallbone, Nicholas and Hughes, John (2010). QuickSpec: Guessing Formal Specifica-
tions Using Testing. In: Tests and Proofs (TAP 2010). Ed. by Fraser, Gordon and Garfantini, Gordon.
Vol. 6143. Lecture Notes in Computer Science. Springer, pp. 6–21 (cit. on p. 12).

Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An Introduction.
Cambridge University Press (cit. on pp. 19–23).

Rosén, Dan (2012). Proving Equational Haskell Properties Using Automated Theorem Provers. MA thesis.
University of Gothenburg (cit. on p. 12).

Sonnex, William, Drossopoulou, Sophia and Eisenbach, Susan (Feb. 2011). Zeno: A Tool for the Auto-
matic Verification of Algebraic Properties of Functional Programs. Tech. rep. Imperial College London
(cit. on p. 9).

References 29/30

http://www.cse.chalmers.se/~jomoa/

References

Sonnex, William, Drossopoulou, Sophia and Eisenbach, Susan (2012). Zeno: An Automated Prover for
Properties of Recursive Data Structures. In: Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2012). Ed. by Flanagan, Cormac and König, Barbara. Vol. 7214. Lecture Notes
in Computer Science. Springer, pp. 407–421 (cit. on p. 9).

References 30/30

	Zeno
	HipSpec
	Hip
	References

