
Verification of Functional Programs
Induction

Andrés Sicard-Ramírez

EAFIT University

Semester 2014-1



Source Code

All the source code have been tested with Agda 2.3.2, Coq 8.4pl3 and Isabelle 2013-2.
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The Principle of Mathematical Induction

The principle of mathematical induction
Let 𝐴(𝑥) be a propositional function. To prove 𝐴(𝑥) for all 𝑥 ∈ ℕ, it suffices prove:

the basis 𝐴(0) and
the induction step, that 𝐴(𝑛) ⇒ 𝐴(𝑛 + 1), for all 𝑛 ∈ ℕ
(𝐴(𝑛) is called the induction hypothesis).
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The Principle of Mathematical Induction

First-order logic version
Let 𝐴(𝑥) be a formula with free variable 𝑥. For each formula 𝐴(𝑥):

[ 𝐴(0) ∧ ∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1) ] ⇒ ∀𝑥.𝐴(𝑥) (axiom schema of induction)

Equivalent formulations

𝐴(0) ⇒ [ (∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)) ⇒ ∀𝑥.𝐴(𝑥) ] (by exportation)
𝐴(0) ⇒ (∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)) ⇒ ∀𝑥.𝐴(𝑥) (right-assoc. conditional)

Inference rule style

𝐴(0) ∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)
∀𝑥.𝐴(𝑥)
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The Principle of Mathematical Induction

Higher-order logic
‘The adjetive ‘first-order’ is used to distinguish the languages... from those in which are pre-
dicates having other predicates or functions as arguments, or quantification over functions or
predicates, or both.’ [Mendelson (1965) 1997, p. 56]

Second-order logic version
Let 𝑋 be a predicate variable.

∀𝑋.𝑋(0) ⇒ (∀𝑥.𝑋(𝑥) ⇒ 𝑋(𝑥 + 1)) ⇒ ∀𝑥.𝑋(𝑥) (axiom of induction)
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The Principle of Mathematical Induction

Historical remark
Dedekind [(1888) 2005] and Peano [(1889) 1967] axiom: 1 ∈ ℕ.
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The Principle of Mathematical Induction

Remark
Coq generates the induction principles associated to the inductively defined (data) types.

Example (Coq)
The inductive data type for natural numbers.

Require Import Unicode.Utf8.

Inductive nat : Set :=
| O : nat
| S : nat → nat.

Continued on next slide
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The Principle of Mathematical Induction

Example (continuation)
The Check nat_ind command yields:

nat_ind : ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

The Check nat_rec command yields:
nat_rec : ∀ P : nat → Set,

P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

The Check nat_rect command yields:
nat_rec : ∀ P : nat → Type,

P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n
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The Principle of Mathematical Induction

Implementation remark
What happen if instead of using

Inductive nat : Set := O : nat | S : nat → nat

we renamed the data type nat by
Inductive P : Set := O : P | S : P → P

or we renamed the data constructor S by
Inductive nat : Set := O : nat | P : nat → nat

?
Source: McBride and McKinna [2004]
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The Principle of Mathematical Induction

Remark
Isabelle also generates the induction principles associated to the inductively defined (data) types.

Example (Isabelle)
The inductive data type for natural numbers.

datatype nat = Z | S nat

The print_theorems command yields (among others):
nat.induct: ?P Z ⇒ ∀x. ?P x ⇒ ?P (S x)) ⇒ ?P ?nat
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The Principle of Mathematical Induction

Remark
Agda doesn’t generate the induction principles, but the user can use pattern matching on the
inductively defined (data) types.

Example (Agda)
The inductive data type for natural numbers.

data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ

Continued on next slide
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The Principle of Mathematical Induction

Example (continuation)
The principle of mathematical induction.

ℕ-ind : (A : ℕ → Set) →
A zero →
(∀ n → A n → A (succ n)) →
∀ n → A n

ℕ-ind A A0 h zero = A0
ℕ-ind A A0 h (succ n) = h n (ℕ-ind A A0 h n)
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The Principle of Mathematical Induction

Remark
In Agda, Coq and Isabelle, the ‘axiom of induction’ is not an axiom

(the introduction rules
induce the induction principles).
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Course-of-Values Induction

Course-of-values induction (strong or complete induction)
Let 𝐴(𝑥) be a propositional function. To prove 𝐴(𝑥) for all 𝑥 ∈ ℕ, it is enough to prove:

(∀0 ≤ 𝑘 < 𝑛)(𝐴(𝑘) ⇒ 𝐴(𝑛)), for all 𝑛 ∈ ℕ.
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Course-of-Values Induction

Example
The Fibonacci numbers are defined by 𝐹0 = 0, 𝐹1 = 1 and
𝐹𝑘+2 = 𝐹𝑘 + 𝐹𝑘+1, so 𝐹 = {0, 1, 1, 2, 3, 5, 8, 13, 21, … }.

Let Φ and Φ̂ be the roots of the equation 𝑥2 − 𝑥 − 1:

Φ = 1 +
√

5
2 and Φ̂ = 1 −

√
5

2 ,

so Φ2 = Φ + 1 and Φ̂2 = Φ̂ + 1. Then [Bird and Wadler 1988, p. 107.]

𝐹𝑘 = 1√
5(Φ𝑘 − Φ̂𝑘), for all 𝑘 ∈ ℕ.

Course-of-Values Induction 22/58



Course-of-Values Induction

Example
The Fibonacci numbers are defined by 𝐹0 = 0, 𝐹1 = 1 and
𝐹𝑘+2 = 𝐹𝑘 + 𝐹𝑘+1, so 𝐹 = {0, 1, 1, 2, 3, 5, 8, 13, 21, … }.

Let Φ and Φ̂ be the roots of the equation 𝑥2 − 𝑥 − 1:

Φ = 1 +
√

5
2 and Φ̂ = 1 −

√
5

2 ,

so Φ2 = Φ + 1 and Φ̂2 = Φ̂ + 1. Then [Bird and Wadler 1988, p. 107.]

𝐹𝑘 = 1√
5(Φ𝑘 − Φ̂𝑘), for all 𝑘 ∈ ℕ.

Course-of-Values Induction 23/58



Mathematical and Course-of-Values Induction

Theorem
Mathematical induction and course-of-values induction are equivalent [Winskel 2010].
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Structural Induction

Structural induction
Let 𝐴(𝑋) be a propositional function about the structures 𝑋 that are defined by some recurs-
ive/inductive definition.

To prove 𝐴(𝑋) for all the structures 𝑋, it suffices prove [Hopcroft, Motwani and Ullman (1979)
2007]:

𝐴(𝑋) for the basis structure(s) of 𝑋 and
given a structure 𝑋 whose recursive/inductive definition says is formed from 𝑌1, … , 𝑌𝑘,
that 𝐴(𝑋) assuming that the properties 𝐴(𝑌1), … , 𝐴(𝑌𝑘) hold.
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Structural Induction for Lists

Example (Coq)
The parametric inductive data type.

Require Import Unicode.Utf8.

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A → list A → list A.

The induction principle.
list_ind : ∀ (A : Type) (P : list A → Prop),

P (nil A) →
(∀ (a : A) (l : list A), P l → P (cons A a l)) →
∀ l : list A, P l
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Structural Induction for Lists

Example (Isabelle)
The polymorphic inductive data type.

datatype 'a list = Nil | Cons 'a "'a list"

The induction principle.
list.induct: ?P Nil ⇒ ∀x1 x2. ?P x2 ⇒ ?P (Cons x1 x2)) ⇒

?P ?list
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Structural Induction for Lists

Example (Agda)
The parametric inductive data type.

data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A

The induction principle.
List-ind : {A : Set} (B : List A → Set) →

B [] →
((x : A) (xs : List A) → B xs → B (x ∷ xs)) →
∀ xs → B xs

List-ind B B[] h [] = B[]
List-ind B B[] h (x ∷ xs) = h x xs (List-ind B B[] h xs)
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Well-Founded Induction

Definition
Let ≺ be a binary relation on a set 𝐴. The relation ≺ is a well-founded relation iff every
non-empty subset 𝑆 ⊆ 𝐴 has a minimal element, that is,

(∀𝑆 ⊆ 𝐴)[ 𝑆 ≠ ∅ ⇒ (∃𝑚 ∈ 𝑆)(∀𝑠 ∈ 𝑆)(𝑠 ⊀ 𝑚) ].

Definition (Well-founded induction)
Let ≺ be a well-founded relation on a set 𝐴 and 𝐴(𝑥) a propositional function. To prove 𝐴(𝑥)
for all 𝑎 ∈ 𝐴, it suffices prove:

(∀𝑏 ≺ 𝑎)(𝐴(𝑏) ⇒ 𝐴(𝑎)), for all 𝑎 ∈ 𝐴.
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Well-Founded Induction

Example
Let ≺ be the well-founded relation on ℕ given by the graph of the successor function
𝑛 ↦ 𝑛 + 1.

Then mathematical induction is a special case of well-founded induction.

Example
Let ≺ be the well-founded relation ‘less than’ on ℕ.
Then course-of-values induction is a special case of well-founded induction.
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Well-Founded Induction

Example
‘If we take ≺ to be the relation between expressions such that 𝑎 ≺ 𝑏 holds iff 𝑎 is an
immediate sub-expression of 𝑏 we obtain the principle of structural induction as a special case
of well-founded induction.’ [Winskel 2010, p. 93]
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Empty Type

In type theory 𝑎 ∶ 𝐴 denotes that 𝑎 is a term (or proof term) of type 𝐴.

Under the proposition-as-types principle, the empty type represents the false (absurdity or
contradiction) proposition [Sørensen and Urzyczyn 2006].
Therefore e : EmptyType represents a contradiction in our formalisation.
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Empty Type

Example (Agda)
data ⊥ : Set where

⊥-elim : {A : Set} → ⊥ → A
⊥-elim () -- The absurd pattern.
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Empty Type

Example (Coq)
(From the standard library)

Inductive Empty_set : Set :=.

Empty_set_rect : ∀ (P : Empty_set → Type) (e : Empty_set), P e

Theorem emptySetElim {A : Set}(e : Empty_set) : A.
apply (Empty_set_rect (fun _ => A) e).

Qed.

Theorem emptySetElim' {A : Set}(e : Empty_set) : A.
elim e.

Qed.
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Strictly Positive Inductive Types

Remark
The inductive types can be defined/represented as least fixed-points of appropriated functions
(functors).

Example
Let 1 be the unity type, and + and × be the operators for disjoint union and Cartesian
product, respectively. Then

Nat ≔ 𝜇𝑋.1 + 𝑋,
List 𝐴 ≔ 𝜇𝑋.1 + (𝐴 × 𝑋).
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Strictly Positive Inductive Types

Definition
‘The occurrence of a type variable is positive iff it occurs within an even number of left hand
sides of →-types, it is strictly positive iff it never occurs on the left hand side of a →-type.’ [Abel
and Altenkirch 2000, p. 21].
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Strictly Positive Inductive Types

Definition
Let 𝜇𝑋.𝐹(𝑋) be an inductive type. The type 𝜇𝑋.𝐹(𝑋) is a strictly positive type if 𝑋 occurs
strictly positive in 𝐹(𝑋).

Positive types Negative types#
"

 
!Strictly positive types

Proof assistants
Agda, Coq and Isabelle accept only strictly positive inductive types.
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Strictly Positive Inductive Types

Some issues with non-strictly positive inductive types
Infinite unfolding
See source code in the course web page.

Proving absurdity
See source code in the course web page.
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Strictly Positive Inductive Types

The following examples of inductive types∗ are rejected by Agda (Coq and Isabelle) because
they are not strictly positive inductive types.

Example (negative type)

D ≔ 𝜇𝑋.𝑋 → 𝑋
data D : Set where

lam : (D → D) → D

-- D is not strictly positive, because it occurs to the left
-- of an arrow in the type of the constructor lam in the
-- definition of D.

∗Adapted from the Coq’Art, Matthes’ PhD thesis and Agda’s source code.
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Example (positive, non-strictly positive type)

P ≔ 𝜇𝑋.(𝑋 → 2) → 2
data P : Set where

p : ((P → Bool) → Bool) → P

-- P is not strictly positive, because it occurs to the left
-- of an arrow in the type of the constructor p in the
-- definition of P.
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