
Verification of Functional Programs
Co-Induction

Andrés Sicard-Ramírez

EAFIT University

Semester 2014-1



Non-Well-Founded Sets

Axiom of foundation (ZFC)
All sets are well-founded.

Theorem
A set 𝑋 is well-founded iff there is no sequence ⟨𝑋𝑛 ∣ 𝑛 ∈ ℕ⟩ such that 𝑋0 = 𝑋 and 𝑋𝑥+1 ∈ 𝑋𝑛
for all 𝑛 ∈ ℕ [Hrbacek and Jech (1978) 1999, Theorem 2.4, p. 256].

Definition
A set 𝑋 is non-well-founded iff there is an infinite sequence 𝑋1, 𝑋2, … such that 𝑋𝑛+1 is a
member of 𝑋𝑛, for all 𝑛 ∈ ℕ [Milner and Tofte 1991, p. 209].

Co-Inductive Types 2/44



Non-Well-Founded Sets

Axiom of foundation (ZFC)
All sets are well-founded.

Theorem
A set 𝑋 is well-founded iff there is no sequence ⟨𝑋𝑛 ∣ 𝑛 ∈ ℕ⟩ such that 𝑋0 = 𝑋 and 𝑋𝑥+1 ∈ 𝑋𝑛
for all 𝑛 ∈ ℕ [Hrbacek and Jech (1978) 1999, Theorem 2.4, p. 256].

Definition
A set 𝑋 is non-well-founded iff there is an infinite sequence 𝑋1, 𝑋2, … such that 𝑋𝑛+1 is a
member of 𝑋𝑛, for all 𝑛 ∈ ℕ [Milner and Tofte 1991, p. 209].

Co-Inductive Types 3/44



Co-Inductive Types

Description
‘The objects of an inductive type are well-founded with respect to the constructors of the type.
In other words, such objects contain only a finite number of constructors. Co-inductive types
arise from relaxing this condition, and admitting types whose objects contain an infinity of
constructors.’ [The Coq Development Team 2016, § 1.3.3].

Remark
Potentially infinity of constructors.

Co-Inductive Types 4/44



Co-Inductive Types

Description
‘The objects of an inductive type are well-founded with respect to the constructors of the type.
In other words, such objects contain only a finite number of constructors. Co-inductive types
arise from relaxing this condition, and admitting types whose objects contain an infinity of
constructors.’ [The Coq Development Team 2016, § 1.3.3].

Remark
Potentially infinity of constructors.

Co-Inductive Types 5/44



Co-Inductive Types

Example (Haskell)
The canonical example of an co-inductive data type are streams.

data Stream a = Cons a (Stream a)

data Nat = Z | S Nat

zeros ∷ Stream Nat
zeros = Cons Z zeros

Remark
Haskell’s data keyword defines both inductive and co-inductive data types. That is not a good
idea!

Co-Inductive Types 6/44



Co-Inductive Types

Example (Haskell)
The canonical example of an co-inductive data type are streams.

data Stream a = Cons a (Stream a)

data Nat = Z | S Nat

zeros ∷ Stream Nat
zeros = Cons Z zeros

Remark
Haskell’s data keyword defines both inductive and co-inductive data types. That is not a good
idea!

Co-Inductive Types 7/44



Co-Inductive Types

Example (Haskell)
The canonical example of an co-inductive data type are streams.

data Stream a = Cons a (Stream a)

data Nat = Z | S Nat

zeros ∷ Stream Nat
zeros = Cons Z zeros

Remark
Haskell’s data keyword defines both inductive and co-inductive data types. That is not a good
idea!

Co-Inductive Types 8/44



Co-Inductive Types

Remark
The Set Implicit Arguments command can be used in Coq for handling the implicit arguments.

Example (Coq)
Require Import Unicode.Utf8.

Set Implicit Arguments.

CoInductive Stream (A : Type) : Type :=
cons : A → Stream A → Stream A.

CoFixpoint zeros : Stream nat := cons O zeros.

Co-Inductive Types 9/44



Co-Inductive Types

Remark
The Set Implicit Arguments command can be used in Coq for handling the implicit arguments.

Example (Coq)
Require Import Unicode.Utf8.

Set Implicit Arguments.

CoInductive Stream (A : Type) : Type :=
cons : A → Stream A → Stream A.

CoFixpoint zeros : Stream nat := cons O zeros.

Co-Inductive Types 10/44



Co-Inductive Types

Example (cont.)
Notation "x ∷ xs" :=

(cons x xs) (at level 60, right associativity).

CoFixpoint zeros : Stream nat := O ∷ zeros.

Remark
We will continue using Coq for the examples related to co-induction.

Co-Inductive Types 11/44



Co-Inductive Types

Example (cont.)
Notation "x ∷ xs" :=

(cons x xs) (at level 60, right associativity).

CoFixpoint zeros : Stream nat := O ∷ zeros.

Remark
We will continue using Coq for the examples related to co-induction.

Co-Inductive Types 12/44



Co-Inductive Types

Example (co-inductive natural numbers)
Intuition: Coℕ = ℕ ∪ {∞}

Require Import Unicode.Utf8.

CoInductive Conat : Set :=
| cozero : Conat
| cosucc : Conat → Conat.

CoFixpoint inf : Conat := cosucc inf.

Co-Inductive Types 13/44



Co-Inductive Types

Definition
Let 𝐷 be a set, let (𝐷, ⊑) be a poset and let 𝑓 be a function 𝑓 ∶ 𝐷 → 𝐷. An element 𝑑 ∈ 𝐷
is a post-fixed point of 𝑓 iff

𝑑 ⊑ 𝑓(𝑑).

Co-Inductive Types 14/44



Co-Inductive Types

Let 𝐷 be a set, (𝐷, ⊑) be a poset and 𝑓 be a function 𝑓 ∶ 𝐷 → 𝐷.

Definition (Greatest post-fixed point)
The greatest post-fixed of 𝑓 is greatest among the post-fixed points of 𝑓 . That is, 𝑑 ∈ 𝐷 is the
greatest post-fixed point of 𝑓 iff:

𝑑 ⊑ 𝑓(𝑑) and
∀𝑥. 𝑥 ⊑ 𝑓(𝑥) ⇒ 𝑥 ⊑ 𝑑.

Theorem
If 𝑑 ∈ 𝐷 is the greatest post-fixed point of 𝑓 , then 𝑑 is the greatest fixed-point of 𝑓 [Ésik 2009,
Proposition 2.1].

Co-Inductive Types 15/44



Co-Inductive Types

Let 𝐷 be a set, (𝐷, ⊑) be a poset and 𝑓 be a function 𝑓 ∶ 𝐷 → 𝐷.

Definition (Greatest post-fixed point)
The greatest post-fixed of 𝑓 is greatest among the post-fixed points of 𝑓 . That is, 𝑑 ∈ 𝐷 is the
greatest post-fixed point of 𝑓 iff:

𝑑 ⊑ 𝑓(𝑑) and
∀𝑥. 𝑥 ⊑ 𝑓(𝑥) ⇒ 𝑥 ⊑ 𝑑.

Theorem
If 𝑑 ∈ 𝐷 is the greatest post-fixed point of 𝑓 , then 𝑑 is the greatest fixed-point of 𝑓 [Ésik 2009,
Proposition 2.1].

Co-Inductive Types 16/44



Co-Inductive Types

Remark
The inductive/co-inductive types can be defined/represented as least/greatest fixed-points of
appropriated functions (functors).
Recall that the least and greatest fixed-points of a unary function 𝑓 are denoted by 𝜇𝑥.𝑓(𝑥)
and 𝜈𝑥.𝑓(𝑥), respectively.

Co-Inductive Types 17/44



Co-Inductive Types

Example
Let 1 be the unity type, and + and × be the operators for disjoint union and Cartesian
product, respectively. Then

Nat ≔ 𝜇𝑋.1 + 𝑋, Conat ≔ 𝜈𝑋.1 + 𝑋,

List 𝐴 ≔ 𝜇𝑋.1 + (𝐴 × 𝑋), Colist 𝐴 ≔ 𝜈𝑋.1 + (𝐴 × 𝑋),
Stream 𝐴 ≔ 𝜈𝑋.𝐴 × 𝑋.

Co-Inductive Types 18/44



Co-Inductive Types

Remark
‘Due to the coincidence of least and greatest fixed-point types [Smyth and Plotkin 1982] in lazy
languages such as Haskell, the distinction between inductive and coinductive types is blurred in
partial functional programming.’ [Abel 2014, p. 148]

Co-Inductive Types 19/44



Co-Recursive Functions Guarded by Constructors

Definition
Recursion function: functions from an inductive type
Co-recursive function: functions into an co-inductive type

‘we use the term recursive program for a function whose domain is type defined recursively as
the least solution of some equation.’ [Gibbons and Hutton 2005, p. 1]
‘we use the term corecursive program for a function whose range is a type defined recursively
as the greatest solution of some equation.’ [Gibbons and Hutton 2005, p. 1]

Remark
Alternative names for co-recursion could be ‘non-wellfounded recursion’ or ‘baseless recur-
sion’ [Moss and Danner 1997].

Co-Recursion 20/44



Co-Recursive Functions Guarded by Constructors

Definition
Recursion function: functions from an inductive type
Co-recursive function: functions into an co-inductive type
‘we use the term recursive program for a function whose domain is type defined recursively as
the least solution of some equation.’ [Gibbons and Hutton 2005, p. 1]

‘we use the term corecursive program for a function whose range is a type defined recursively
as the greatest solution of some equation.’ [Gibbons and Hutton 2005, p. 1]

Remark
Alternative names for co-recursion could be ‘non-wellfounded recursion’ or ‘baseless recur-
sion’ [Moss and Danner 1997].

Co-Recursion 21/44



Co-Recursive Functions Guarded by Constructors

Definition
Recursion function: functions from an inductive type
Co-recursive function: functions into an co-inductive type
‘we use the term recursive program for a function whose domain is type defined recursively as
the least solution of some equation.’ [Gibbons and Hutton 2005, p. 1]
‘we use the term corecursive program for a function whose range is a type defined recursively
as the greatest solution of some equation.’ [Gibbons and Hutton 2005, p. 1]

Remark
Alternative names for co-recursion could be ‘non-wellfounded recursion’ or ‘baseless recur-
sion’ [Moss and Danner 1997].

Co-Recursion 22/44



Co-Recursive Functions Guarded by Constructors

Definition
Recursion function: functions from an inductive type
Co-recursive function: functions into an co-inductive type
‘we use the term recursive program for a function whose domain is type defined recursively as
the least solution of some equation.’ [Gibbons and Hutton 2005, p. 1]
‘we use the term corecursive program for a function whose range is a type defined recursively
as the greatest solution of some equation.’ [Gibbons and Hutton 2005, p. 1]

Remark
Alternative names for co-recursion could be ‘non-wellfounded recursion’ or ‘baseless recur-
sion’ [Moss and Danner 1997].

Co-Recursion 23/44



Co-Recursive Functions Guarded by Constructors

Condition
‘Recursive calls must be protected by at least one constructor, and no other functions apart
from constructors can be applied to them.’ [Giménez 1995, p. 51]

Example
CoFixpoint from (n : nat) : Stream nat := n ∷ from (S n).

Example
CoFixpoint alter : Stream bool := true ∷ false ∷ alter.

Co-Recursion 24/44



Co-Recursive Functions Guarded by Constructors

Condition
‘Recursive calls must be protected by at least one constructor, and no other functions apart
from constructors can be applied to them.’ [Giménez 1995, p. 51]

Example
CoFixpoint from (n : nat) : Stream nat := n ∷ from (S n).

Example
CoFixpoint alter : Stream bool := true ∷ false ∷ alter.

Co-Recursion 25/44



Co-Recursive Functions Guarded by Constructors

Condition
‘Recursive calls must be protected by at least one constructor, and no other functions apart
from constructors can be applied to them.’ [Giménez 1995, p. 51]

Example
CoFixpoint from (n : nat) : Stream nat := n ∷ from (S n).

Example
CoFixpoint alter : Stream bool := true ∷ false ∷ alter.

Co-Recursion 26/44



Co-Recursive Functions Guarded by Constructors

Example (counterexample)
CoFixpoint

filter (A : Type)(P : A → bool)(xs : Stream A) : Stream A :=
match xs with x' ∷ xs' =>

if P x' then x' ∷ filter P xs' else filter P xs'
end.

The filter function is not guarded by constructors because there is not constructor to guard
the recursive call in the else branch.

Co-Recursion 27/44



Co-Recursive Functions Guarded by Constructors

Auxiliary definition
Definition tail (A : Type)(xs : Stream A) : Stream A :=
match xs with _ ∷ xs' => xs' end.

Example (counterexample)
CoFixpoint zeros : Stream nat := O ∷ tail zeros.

The zeros function is not guarded by constructors because there is a function (tail) applied
to the recursive call which is not a constructor.

Co-Recursion 28/44



Co-Recursive Functions Guarded by Constructors

Auxiliary definition
Definition tail (A : Type)(xs : Stream A) : Stream A :=
match xs with _ ∷ xs' => xs' end.

Example (counterexample)
CoFixpoint zeros : Stream nat := O ∷ tail zeros.

The zeros function is not guarded by constructors because there is a function (tail) applied
to the recursive call which is not a constructor.

Co-Recursion 29/44



Co-Recursive Functions Guarded by Constructors

Example
From nat to Conat (recursive version).

Fixpoint nat2conat (n : nat) : Conat :=
match n with

| O => cozero
| S n' => cosucc (nat2conat n')

end.

From nat to Conat (co-recursive version).
CoFixpoint nat2conat (n : nat) : Conat :=

match n with
| O => cozero
| S n' => cosucc (nat2conat n')

end.

Co-Recursion 30/44



Co-Recursive Functions Guarded by Constructors

Example
From nat to Conat (recursive version).

Fixpoint nat2conat (n : nat) : Conat :=
match n with

| O => cozero
| S n' => cosucc (nat2conat n')

end.

From nat to Conat (co-recursive version).
CoFixpoint nat2conat (n : nat) : Conat :=
match n with

| O => cozero
| S n' => cosucc (nat2conat n')

end.

Co-Recursion 31/44



Equality

Suitable notions of equality between potentially infinite terms can be defined as binary
co-inductive relations.

Auxiliary definition
Definition head (A : Type)(xs : Stream A) : A :=
match xs with x' ∷ _ => x' end.

Equality 32/44



Equality

Suitable notions of equality between potentially infinite terms can be defined as binary
co-inductive relations.
Auxiliary definition

Definition head (A : Type)(xs : Stream A) : A :=
match xs with x' ∷ _ => x' end.

Equality 33/44



Equality

Example (equality on streams)
The equality between streams is defined by the co-inductive bisimilarity relation [Turner 1995].

CoInductive EqStream (A : Type) : Stream A → Stream A → Prop :=
eqS : ∀ xs ys : Stream A,

head xs = head ys →
EqStream (tail xs) (tail ys) →
EqStream xs ys.

Notation "xs ≈ ys" :=
(EqStream xs ys) (at level 70, no associativity).

Equality 34/44



Equality

Example (equality on streams)
The equality between streams is defined by the co-inductive bisimilarity relation [Turner 1995].

CoInductive EqStream (A : Type) : Stream A → Stream A → Prop :=
eqS : ∀ xs ys : Stream A,

head xs = head ys →
EqStream (tail xs) (tail ys) →
EqStream xs ys.

Notation "xs ≈ ys" :=
(EqStream xs ys) (at level 70, no associativity).

Equality 35/44



Co-Induction Principle

Co-induction principle, greatest fixed-point induction or Park’s rule
Let 𝐹(𝑋) be a functor, then

∀𝑋.𝑋 ⊑ 𝐹(𝑋) ⇒ 𝑋 ⊑ 𝜈𝑋.𝐹(𝑋)

is the co-induction principle associated to 𝐹(𝑋) [Dybjer and Sander 1989; Giménez and Casterán
2007].

Co-Induction Principle 36/44



Co-Induction Principle

Example (co-induction principle associated to ≈)
The functor (bisimulation):

𝐹(𝑋, 𝑥𝑠, 𝑦𝑠) ≔ head 𝑥𝑠 = head 𝑦𝑠 ∧ 𝑋(tail 𝑥𝑠, tail 𝑦𝑠)

The co-induction principle:

∀𝑋.(∀𝑥𝑠 ∀𝑦𝑠.𝑋(𝑥𝑠, 𝑦𝑠) ⇒ 𝐹(𝑋, 𝑥𝑠, 𝑦𝑠)) ⇒ ∀𝑥𝑠 ∀𝑦𝑠.𝑋(𝑥𝑠, 𝑦𝑠) ⇒ 𝜈𝑋.𝐹(𝑋, 𝑥𝑠, 𝑦𝑠)

The Coq type:
co_ind : ∀ A : Type, ∀ R : Stream A → Stream A → Prop,

(∀ xs ys : Stream A, R xs ys →
head xs = head ys ∧ R (tail xs) (tail ys)) →

∀ xs ys : Stream A, R xs ys → xs ≈ ys

Co-Induction Principle 37/44



Co-Induction Principle

Example (co-induction principle associated to ≈)
The functor (bisimulation):

𝐹(𝑋, 𝑥𝑠, 𝑦𝑠) ≔ head 𝑥𝑠 = head 𝑦𝑠 ∧ 𝑋(tail 𝑥𝑠, tail 𝑦𝑠)

The co-induction principle:

∀𝑋.(∀𝑥𝑠 ∀𝑦𝑠.𝑋(𝑥𝑠, 𝑦𝑠) ⇒ 𝐹(𝑋, 𝑥𝑠, 𝑦𝑠)) ⇒ ∀𝑥𝑠 ∀𝑦𝑠.𝑋(𝑥𝑠, 𝑦𝑠) ⇒ 𝜈𝑋.𝐹(𝑋, 𝑥𝑠, 𝑦𝑠)

The Coq type:
co_ind : ∀ A : Type, ∀ R : Stream A → Stream A → Prop,

(∀ xs ys : Stream A, R xs ys →
head xs = head ys ∧ R (tail xs) (tail ys)) →

∀ xs ys : Stream A, R xs ys → xs ≈ ys

Co-Induction Principle 38/44



Co-Induction Principle

Example (co-induction principle associated to ≈)
The functor (bisimulation):

𝐹(𝑋, 𝑥𝑠, 𝑦𝑠) ≔ head 𝑥𝑠 = head 𝑦𝑠 ∧ 𝑋(tail 𝑥𝑠, tail 𝑦𝑠)

The co-induction principle:

∀𝑋.(∀𝑥𝑠 ∀𝑦𝑠.𝑋(𝑥𝑠, 𝑦𝑠) ⇒ 𝐹(𝑋, 𝑥𝑠, 𝑦𝑠)) ⇒ ∀𝑥𝑠 ∀𝑦𝑠.𝑋(𝑥𝑠, 𝑦𝑠) ⇒ 𝜈𝑋.𝐹(𝑋, 𝑥𝑠, 𝑦𝑠)

The Coq type:
co_ind : ∀ A : Type, ∀ R : Stream A → Stream A → Prop,

(∀ xs ys : Stream A, R xs ys →
head xs = head ys ∧ R (tail xs) (tail ys)) →

∀ xs ys : Stream A, R xs ys → xs ≈ ys

Co-Induction Principle 39/44



Co-Induction Principle

Example (the map-iterate property)
The property states that [Gibbons and Hutton 2005; Giménez and Casterán 2007]

map f (iterate f x) ≈ iterate f (f x).

where

CoFixpoint
map (A B : Type)(f : A → B)(xs : Stream A) : Stream B:=
match xs with x' ∷ xs' => f x' ∷ map f xs' end.

CoFixpoint iterate (A : Type)(f : A → A)(a : A) : Stream A :=
a ∷ iterate f (f a).

See the proof in the source code in the course web page.

Co-Induction Principle 40/44



Co-Induction Principle

Example (the map-iterate property)
The property states that [Gibbons and Hutton 2005; Giménez and Casterán 2007]

map f (iterate f x) ≈ iterate f (f x).

where
CoFixpoint

map (A B : Type)(f : A → B)(xs : Stream A) : Stream B:=
match xs with x' ∷ xs' => f x' ∷ map f xs' end.

CoFixpoint iterate (A : Type)(f : A → A)(a : A) : Stream A :=
a ∷ iterate f (f a).

See the proof in the source code in the course web page.

Co-Induction Principle 41/44



Co-Induction Principle

Example (the map-iterate property)
The property states that [Gibbons and Hutton 2005; Giménez and Casterán 2007]

map f (iterate f x) ≈ iterate f (f x).

where
CoFixpoint

map (A B : Type)(f : A → B)(xs : Stream A) : Stream B:=
match xs with x' ∷ xs' => f x' ∷ map f xs' end.

CoFixpoint iterate (A : Type)(f : A → A)(a : A) : Stream A :=
a ∷ iterate f (f a).

See the proof in the source code in the course web page.

Co-Induction Principle 42/44



References

Abel, Andreas (2014). Programming and Reasoning with Infinite Structures Using Copatterns and Sized
Types. In: Software Engineering Workshops 2014 (SE-WS 2014). Ed. by Schmid, Klaus, Böhm,
Wolfgang, Heinrich, Robert, Herrmann, Andrea, Hoffmann, Anne, Landes, Dieter, Konersmann,
Marco, Ruhroth, Thomas, Sander, Oliver, Stolz, Volker, Trancón-Widemann, Baltasar and Weißbach,
Rüdiger. Vol. 1129. CEUR Workshop Proceedings. CEUR-WS.org, pp. 148–150 (cit. on p. 19).

Dybjer, Peter and Sander, Herbert P. (1989). A Functional Programming Approach to the Specification
and Verification of Concurrent Systems. Formal Aspects of Computing 1, pp. 303–319 (cit. on p. 36).

Ésik, Zoltán (2009). Fixed Point Theory. In: Handbook of Weighted Automata. Ed. by Droste, Manfred,
Kuich, Werner and Vogler, Heiko. Monographs in Theoretical Computer Science. An EATCS Series.
Springer. Chap. 2 (cit. on pp. 15, 16).

Gibbons, Jeremy and Hutton, Graham (2005). Proof Methods for Corecursive Programs. Fundamenta
Informaticae XX, pp. 1–14 (cit. on pp. 20–23, 40–42).

Giménez, Eduardo (1995). Codifying Guarded Definitions with Recursive Schemes. In: Types for Proofs
and Programs (TYPES 1994). Ed. by Dybjer, Peter, Nordström, Bengt and Smith, Jan. Vol. 996.
Lecture Notes in Computer Science. Springer, pp. 39–59 (cit. on pp. 24–26).

References 43/44



References

Giménez, Eduardo and Casterán, Pierre (2007). A Tutorial on [Co-]Inductive Types in Coq. url: http:
//coq.inria.fr/documentation (visited on 29/07/2014) (cit. on pp. 36, 40–42).

Hrbacek, Karel and Jech, Thomas [1978] (1999). Introduction to Set Theory. Third Edition, Revised and
Expanded. Marcel Dekker (cit. on pp. 2, 3).

Milner, Robin and Tofte, Mads (1991). Co-induction in Relational Semantics. Theoretical Computer
Science 87.1, pp. 209–220. doi: 10.1016/0304-3975(91)90033-X (cit. on pp. 2, 3).

Moss, Lawrence S. and Danner, Norman (1997). On the Foundation of Corecursion. Logic Journal of the
IGPL 5.2, pp. 231–257 (cit. on pp. 20–23).

Smyth, M. B. and Plotkin, G. D. (1982). The Category-Theoretic Solution of Recursive Domain Equa-
tions. SIAM Journal on Computing 11.4, pp. 761–783 (cit. on p. 19).

The Coq Development Team (2016). The Coq Proof Assistant. Reference Manual. Version 8.5pl2. (Cit.
on pp. 4, 5).

Turner, D. A. (1995). Elementary Strong Functional Programming. In: Functional Programming Lan-
guages in Education (FPLE 1995). Ed. by Hartel, Pieter H. and Plasmeijer, Rinus. Vol. 1022. Lecture
Notes in Computer Science. Springer, pp. 1–13 (cit. on pp. 34, 35).

References 44/44

http://coq.inria.fr/documentation
http://coq.inria.fr/documentation
https://doi.org/10.1016/0304-3975(91)90033-X

	Co-Inductive Types
	Co-Recursion
	Equality
	Co-Induction Principle
	References

