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Non-Well-Founded Sets

Axiom of foundation (ZFC)
All sets are well-founded.

Theorem
A set 𝑋 is well-founded iff there is no sequence ⟨𝑋𝑛 ∣ 𝑛 ∈ ℕ⟩ such that 𝑋0 = 𝑋 and 𝑋𝑥+1 ∈ 𝑋𝑛
for all 𝑛 ∈ ℕ [Hrbacek and Jech (1978) 1999, Theorem 2.4, p. 256].

Definition
A set 𝑋 is non-well-founded iff there is an infinite sequence 𝑋1, 𝑋2, … such that 𝑋𝑛+1 is a
member of 𝑋𝑛, for all 𝑛 ∈ ℕ [Milner and Tofte 1991, p. 209].
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Co-Inductive Types

Description
‘The objects of an inductive type are well-founded with respect to the constructors of the type.
In other words, such objects contain only a finite number of constructors. Co-inductive types
arise from relaxing this condition, and admitting types whose objects contain an infinity of
constructors.’ [The Coq Development Team 2016, § 1.3.3].

Remark
Potentially infinity of constructors.
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Co-Inductive Types

Example (Haskell)
The canonical example of an co-inductive data type are streams.

data Stream a = Cons a (Stream a)

data Nat = Z | S Nat

zeros ∷ Stream Nat
zeros = Cons Z zeros

Remark
Haskell’s data keyword defines both inductive and co-inductive data types. That is not a good
idea!
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Co-Inductive Types

Remark
The Set Implicit Arguments command can be used in Coq for handling the implicit arguments.

Example (Coq)
Require Import Unicode.Utf8.

Set Implicit Arguments.

CoInductive Stream (A : Type) : Type :=
cons : A → Stream A → Stream A.

CoFixpoint zeros : Stream nat := cons O zeros.
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Co-Inductive Types

Example (cont.)
Notation "x ∷ xs" :=

(cons x xs) (at level 60, right associativity).

CoFixpoint zeros : Stream nat := O ∷ zeros.

Remark
We will continue using Coq for the examples related to co-induction.
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Co-Inductive Types

Example (co-inductive natural numbers)
Intuition: Coℕ = ℕ ∪ {∞}

Require Import Unicode.Utf8.

CoInductive Conat : Set :=
| cozero : Conat
| cosucc : Conat → Conat.

CoFixpoint inf : Conat := cosucc inf.
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Co-Inductive Types

Definition
Let 𝐷 be a set, let (𝐷, ⊑) be a poset and let 𝑓 be a function 𝑓 ∶ 𝐷 → 𝐷. An element 𝑑 ∈ 𝐷
is a post-fixed point of 𝑓 iff

𝑑 ⊑ 𝑓(𝑑).

Co-Inductive Types 14/44



Co-Inductive Types

Let 𝐷 be a set, (𝐷, ⊑) be a poset and 𝑓 be a function 𝑓 ∶ 𝐷 → 𝐷.

Definition (Greatest post-fixed point)
The greatest post-fixed of 𝑓 is greatest among the post-fixed points of 𝑓 . That is, 𝑑 ∈ 𝐷 is the
greatest post-fixed point of 𝑓 iff:

𝑑 ⊑ 𝑓(𝑑) and
∀𝑥. 𝑥 ⊑ 𝑓(𝑥) ⇒ 𝑥 ⊑ 𝑑.

Theorem
If 𝑑 ∈ 𝐷 is the greatest post-fixed point of 𝑓 , then 𝑑 is the greatest fixed-point of 𝑓 [Ésik 2009,
Proposition 2.1].
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Co-Inductive Types

Remark
The inductive/co-inductive types can be defined/represented as least/greatest fixed-points of
appropriated functions (functors).
Recall that the least and greatest fixed-points of a unary function 𝑓 are denoted by 𝜇𝑥.𝑓(𝑥)
and 𝜈𝑥.𝑓(𝑥), respectively.
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Co-Inductive Types

Example
Let 1 be the unity type, and + and × be the operators for disjoint union and Cartesian
product, respectively. Then

Nat ≔ 𝜇𝑋.1 + 𝑋, Conat ≔ 𝜈𝑋.1 + 𝑋,

List 𝐴 ≔ 𝜇𝑋.1 + (𝐴 × 𝑋), Colist 𝐴 ≔ 𝜈𝑋.1 + (𝐴 × 𝑋),
Stream 𝐴 ≔ 𝜈𝑋.𝐴 × 𝑋.
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Co-Inductive Types

Remark
‘Due to the coincidence of least and greatest fixed-point types [Smyth and Plotkin 1982] in lazy
languages such as Haskell, the distinction between inductive and coinductive types is blurred in
partial functional programming.’ [Abel 2014, p. 148]
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Co-Recursive Functions Guarded by Constructors

Definition
Recursion function: functions from an inductive type
Co-recursive function: functions into an co-inductive type

‘we use the term recursive program for a function whose domain is type defined recursively as
the least solution of some equation.’ [Gibbons and Hutton 2005, p. 1]
‘we use the term corecursive program for a function whose range is a type defined recursively
as the greatest solution of some equation.’ [Gibbons and Hutton 2005, p. 1]

Remark
Alternative names for co-recursion could be ‘non-wellfounded recursion’ or ‘baseless recur-
sion’ [Moss and Danner 1997].
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Co-Recursive Functions Guarded by Constructors

Condition
‘Recursive calls must be protected by at least one constructor, and no other functions apart
from constructors can be applied to them.’ [Giménez 1995, p. 51]

Example
CoFixpoint from (n : nat) : Stream nat := n ∷ from (S n).

Example
CoFixpoint alter : Stream bool := true ∷ false ∷ alter.
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Co-Recursive Functions Guarded by Constructors

Example (counterexample)
CoFixpoint

filter (A : Type)(P : A → bool)(xs : Stream A) : Stream A :=
match xs with x' ∷ xs' =>

if P x' then x' ∷ filter P xs' else filter P xs'
end.

The filter function is not guarded by constructors because there is not constructor to guard
the recursive call in the else branch.
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Co-Recursive Functions Guarded by Constructors

Auxiliary definition
Definition tail (A : Type)(xs : Stream A) : Stream A :=
match xs with _ ∷ xs' => xs' end.

Example (counterexample)
CoFixpoint zeros : Stream nat := O ∷ tail zeros.

The zeros function is not guarded by constructors because there is a function (tail) applied
to the recursive call which is not a constructor.
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Co-Recursive Functions Guarded by Constructors

Example
From nat to Conat (recursive version).

Fixpoint nat2conat (n : nat) : Conat :=
match n with

| O => cozero
| S n' => cosucc (nat2conat n')

end.

From nat to Conat (co-recursive version).
CoFixpoint nat2conat (n : nat) : Conat :=

match n with
| O => cozero
| S n' => cosucc (nat2conat n')

end.
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Equality

Suitable notions of equality between potentially infinite terms can be defined as binary
co-inductive relations.

Auxiliary definition
Definition head (A : Type)(xs : Stream A) : A :=
match xs with x' ∷ _ => x' end.
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Equality

Example (equality on streams)
The equality between streams is defined by the co-inductive bisimilarity relation [Turner 1995].

CoInductive EqStream (A : Type) : Stream A → Stream A → Prop :=
eqS : ∀ xs ys : Stream A,

head xs = head ys →
EqStream (tail xs) (tail ys) →
EqStream xs ys.

Notation "xs ≈ ys" :=
(EqStream xs ys) (at level 70, no associativity).

Equality 34/44



Equality

Example (equality on streams)
The equality between streams is defined by the co-inductive bisimilarity relation [Turner 1995].

CoInductive EqStream (A : Type) : Stream A → Stream A → Prop :=
eqS : ∀ xs ys : Stream A,

head xs = head ys →
EqStream (tail xs) (tail ys) →
EqStream xs ys.

Notation "xs ≈ ys" :=
(EqStream xs ys) (at level 70, no associativity).

Equality 35/44



Co-Induction Principle

Co-induction principle, greatest fixed-point induction or Park’s rule
Let 𝐹(𝑋) be a functor, then

∀𝑋.𝑋 ⊑ 𝐹(𝑋) ⇒ 𝑋 ⊑ 𝜈𝑋.𝐹(𝑋)

is the co-induction principle associated to 𝐹(𝑋) [Dybjer and Sander 1989; Giménez and Casterán
2007].
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Co-Induction Principle

Example (co-induction principle associated to ≈)
The functor (bisimulation):

𝐹(𝑋, 𝑥𝑠, 𝑦𝑠) ≔ head 𝑥𝑠 = head 𝑦𝑠 ∧ 𝑋(tail 𝑥𝑠, tail 𝑦𝑠)

The co-induction principle:

∀𝑋.(∀𝑥𝑠 ∀𝑦𝑠.𝑋(𝑥𝑠, 𝑦𝑠) ⇒ 𝐹(𝑋, 𝑥𝑠, 𝑦𝑠)) ⇒ ∀𝑥𝑠 ∀𝑦𝑠.𝑋(𝑥𝑠, 𝑦𝑠) ⇒ 𝜈𝑋.𝐹(𝑋, 𝑥𝑠, 𝑦𝑠)

The Coq type:
co_ind : ∀ A : Type, ∀ R : Stream A → Stream A → Prop,

(∀ xs ys : Stream A, R xs ys →
head xs = head ys ∧ R (tail xs) (tail ys)) →

∀ xs ys : Stream A, R xs ys → xs ≈ ys
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Co-Induction Principle

Example (the map-iterate property)
The property states that [Gibbons and Hutton 2005; Giménez and Casterán 2007]

map f (iterate f x) ≈ iterate f (f x).

where

CoFixpoint
map (A B : Type)(f : A → B)(xs : Stream A) : Stream B:=
match xs with x' ∷ xs' => f x' ∷ map f xs' end.

CoFixpoint iterate (A : Type)(f : A → A)(a : A) : Stream A :=
a ∷ iterate f (f a).

See the proof in the source code in the course web page.
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