Andrés Sicard-Ramirez

EAFIT University

Semester 2014-1



@ A type is a set of values (and operations on them).



What is a Type?

@ A type is a set of values (and operations on them).

e Types as ranges of significance of propositional functions. Let ¢(x) be a (unary)
propositional function. The type of ¢(x) is the range within which = must lie if ¢(z) is to
be a proposition (Russell 1938, Appendix B: The Doctrine of Types).

In modern terminology, Rusell’'s types are domains of propositional functions.

Preliminary Concepts 3/60



What is a Type?

@ A type is a set of values (and operations on them).

e Types as ranges of significance of propositional functions. Let ¢(x) be a (unary)
propositional function. The type of ¢(x) is the range within which = must lie if ¢(z) is to
be a proposition (Russell 1938, Appendix B: The Doctrine of Types).

In modern terminology, Rusell’'s types are domains of propositional functions.

Example

Let ¢(x) be the propositional function ‘z is a prime number’. Then ¢(x) is a proposition
only when its argument is a natural number.

¢ : N — {False, True}

o(z) = x is a prime number.

Preliminary Concepts 4/60



What is a Type?

@ ‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ (Kiselyov and Shan 2008, p. 8)

Preliminary Concepts 5/60



What is a Type?

@ ‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ (Kiselyov and Shan 2008, p. 8)

@ The propositions-as-types principle (Curry-Howard correspondence)

Preliminary Concepts 6/60



What is a Type?

@ ‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ (Kiselyov and Shan 2008, p. 8)

@ The propositions-as-types principle (Curry-Howard correspondence)
e Homotopy Type Theory (HTT)

Propositions are types, but not all types are propositions (e.g. higher-order inductive
types)

Preliminary Concepts 7/60



What is a Type?

Example (some Haskell's types)

Type variables: a, b

@ Type constants: Int, Integer, Char

o Function types: Int - Bool, (Char - Int) - Integer
@ Product types: (Int, Char), (a, b)

@ Disjoint union types:

data Sum a b = Inl a | Inr b

Preliminary Concepts 8/60



@ Over-sized slogan:

‘Well-type programs cannot “go wrong”’ (Milner 1978, p. 348)



Type Systems

@ Over-sized slogan:

‘Well-type programs cannot “go wrong” (Milner 1978, p. 348)

@ 'A type system is a tractable syntactic method for proving the absence of certain program
behaviors by classifying phrases according to the kinds of values they compute.” (Pierce
2002, p. 1)

Preliminary Concepts 10/60



Referential Transparency

‘We use [referential transparency| to refer to the fact of mathematics which says: The only
thing that matters about an expression is its value, and any subexpression can be replaced by
any other equal in value. (Stoy 1977, p. 5).

Preliminary Concepts 11/60



Referential Transparency

‘We use [referential transparency| to refer to the fact of mathematics which says: The only

thing that matters about an expression is its value, and any subexpression can be replaced by
any other equal in value. (Stoy 1977, p. 5).

‘A language that supports the concept that “equals can be substituted for equals” in an
expression without changing the value of the expression is said to be referentially
transparent. (Abelson and Sussman 1996, p. 233).

Preliminary Concepts 12/60



Referential Transparency

Example

The following C program prints hello, world twice.

#include <stdio.h>

int

main (void)

{
printf ("hello, world");
printf ("hello, world");
return 0;

}

Preliminary Concepts 13/60



Referential Transparency

Example

The following C program prints hello, world once.

#include <stdio.h>

int
main (void)
{

int x;

x = printf ("hello, world");
X; X;

return 0;

Preliminary Concepts 14/60



Referential Transparency

Example

The following Haskell program prints hello, world twice.

main :: I0 ()
main = putStr "hello, world" >> putStr "hello, world"

Preliminary Concepts 15/60



Referential Transparency

In Haskell, given

let x = exp
in ... X ...0X ...

the meaning of ... x ... x ... isthesameas ...

Preliminary Concepts

exp ...

exp ...

16/60



Referential Transparency

In Haskell, given

let x = exp

in ... X .. X L.,
the meaning of ... x ... x ... isthesameas ... exp ..
Example

The following Haskell program prints hello, world twice.

main :: I0 ()
main = let x : I0 ()

x = putStr "hello, world"
in x >> X

Preliminary Concepts

. exp ...

17/60



Referential Transparency

Example

The following Haskell program prints hello, world twice.
main :: I0 ()
main = x >> X

where x :: I0 ()
X = putStr "hello, world"

Preliminary Concepts 18/60



Pure Functions

Side effects

‘A side effect introduces a dependency between the global state of the system and the be-

haviour of a function... Side effects are essentially invisible inputs to, or outputs from, func-
tions.” (O'Sullivan, Goerzen and Stewart 2008, p. 27).

Preliminary Concepts

19/60



Pure Functions

Side effects

‘A side effect introduces a dependency between the global state of the system and the be-
haviour of a function... Side effects are essentially invisible inputs to, or outputs from, func-
tions.” (O'Sullivan, Goerzen and Stewart 2008, p. 27).

Pure functions

‘Take all their input as explicit arguments, and produce all their output as explicit results. (Hut-
ton 2007, p. 87).

Preliminary Concepts 20/60



Pure Functions

Are the following GHC 7.8.2 functions, pure functions?

maxBound : Int -- Prelude
0s @ String -- System.Info

*From: https://wiki.haskell.org/Referential transparency, 2014-02-25.
Preliminary Concepts 21/60


https://wiki.haskell.org/Referential_transparency

Pure Functions

Are the following GHC 7.8.2 functions, pure functions?
maxBound :: Int -- Prelude
0s @ String -- System.Info

‘One perspective is that Haskell is not just one language (plus Prelude), but a family of
languages, parametrized by a collection of implementation-dependent parameters. Each such

language is RT, even if the collection as a whole might not be. Some people are satisfied with
situation and others are not." *

*From: https://wiki.haskell.org/Referential transparency, 2014-02-25.
Preliminary Concepts 22/60


https://wiki.haskell.org/Referential_transparency

Functions are First-Class Citizens

Source: Abelson and Sussman (1996)

@ They can be passed as arguments and they can be returned as results (higher-order
functions)

@ They can be assigned to variables

@ They can be stored in data structures

Preliminary Concepts 23/60



Bottom

Working with functions how handle undefined values yielded by partial functions or
non-terminating functions?

Example
head :: [a] - a
head (x : ) = X
head [] = ?

Preliminary Concepts

24/60



Bottom

Working with functions how handle undefined values yielded by partial functions or
non-terminating functions?

Example
head :: [a] - a
head (x : ) = X
head [] = ?
Example

fst it (a, b) - a
fst (x, ) =X

ones : [Int]
ones = 1 : ones

fst (ones, 10) = ?

Preliminary Concepts 25/60



Bottom

The L symbol represents the undefined value.
(L is represented in Haskell by the undefined keyword)
Example (first version)

head [] = undefined
fst (ones, 10) = undefined

*See ‘Hussling Haskell types into Hasse diagrams’ from Edward Z. Yang's blog on December 6, 2010.

Preliminary Concepts

26/60



Bottom

The L symbol represents the undefined value.
(L is represented in Haskell by the undefined keyword)

Example (first version)

head []
fst (ones, 10)

undefined
undefined

Remark

The L value is polymorphic in Haskell.

Remark
The Haskell types are lifted types.*

*See ‘Hussling Haskell types into Hasse diagrams’ from Edward Z. Yang's blog on December 6, 2010.
Preliminary Concepts 27/60



Example (second version)

head [| = L,
fst (ones, 10) = Ly

Therefore, head [] # fst (ones, 10).



Bottom

Example
foo : Int - Int
foo 0 =0

bar @ Int - Int
bar n = bar (n + 1)

foobar :: Int - Int
foobar n = if foo n == 0 then 1 else 2

Preliminary Concepts 29/60



Bottom

Example
foo : Int - Int
foo 0 =0

bar @ Int - Int
bar n = bar (n + 1)

foobar :: Int - Int
foobar n = if foo n == 0 then 1 else 2

Can we replace foo by bar in foobar?

Preliminary Concepts 30/60



Bottom

Example
foo : Int - Int
foo 0 =0

bar @ Int - Int
bar n = bar (n + 1)

foobar :: Int - Int
foobar n = if foo n == 0 then 1 else 2

Can we replace foo by bar in foobar? Only for n # 0.

Preliminary Concepts 31/60



See slides for the chapter 12 on the book by Hutton (2007):
http://www.cs.nott.ac.uk/~gmh/book.html.


http://www.cs.nott.ac.uk/~gmh/book.html

Strict and Non-Strict Functions

Definition
Let f be a unary function. If f L = 1 then f is a strict function, otherwise it is a non-strict
function. The definition generalise to n-ary functions.

Example
The three function is non-strict.

three @ a - Int
three =3

three undefined =
three (head []) =
three (fst (ones, 10)) =
three (putStr "hello, world") =

w w w w

Preliminary Concepts 33/60



Strict and Non-Strict Functions

Example

three i a -» Int
three =3

Non-strict reasoning...

(Vo € Int)(Vy)(x + three y = x + 3).

Preliminary Concepts 34/60



Strict and Non-Strict Functions

Example
(Why Haskell hasn't a predefined recursive data type for natural numbers?)

data Nat = Zero | Succ Nat

Zero : Nat
Succ : Nat - Nat

Preliminary Concepts 35/60



Strict and Non-Strict Functions

Example
(Why Haskell hasn't a predefined recursive data type for natural numbers?)

data Nat = Zero | Succ Nat

Zero : Nat
Succ : Nat - Nat

Is Succ a non-strict function?

Preliminary Concepts 36/60



Strict and Non-Strict Functions

Example
(Why Haskell hasn't a predefined recursive data type for natural numbers?)

data Nat = Zero | Succ Nat

Zero : Nat
Succ : Nat - Nat

Is Succ a non-strict function?

We can define
inf :: Nat
inf = Succ inf

Preliminary Concepts 37/60



Strict and Non-Strict Functions

Example (cont.)

Nat represents the lazy natural numbers, that is, Succ L # L (Escardé 1993).

sinf
0=1,
n + 1 = Succ n,
inf = n
new

Preliminary Concepts

38/60



Partially Ordered Sets

Definition

A partially ordered set (poset) (D,C) is a set D on which the binary relation C satisfies the
following properties:

Ve.x Cx (reflexive)
VeVyVz.e CyAyCz=2C 2 (transitive)
VeVy.xCyAyCoe=x=y (antisymmetry)

Preliminary Concepts 39/60



Partially Ordered Sets

Examples
e (Z,<) is a poset.
o Let a,b € Z with a # 0. The divisibility relation is defined by a | b := 3¢ (ac = b). Then
(Z*,]) is a poset.
e (P(A),C) is a poset.

Preliminary Concepts 40/60



Partially Ordered Sets

Example
Hasse diagram for the poset ({1,2,3,4,6,8,12},|).

8

Preliminary Concepts

12

41/60



Partially Ordered Sets

Example

Hasse diagram for the poset ({a,b,c}, ).

{a.b.c}

. c}./ >
<
\ /

0

{b, ¢}

{b}

Preliminary Concepts

42/60



Monotone Functions

Definition
Let (D,C) and (D’,C’) be two posets. A function f: D — D’ is monotone iff

Vo vy x Ty = f(z) T f(y).

Preliminary Concepts 43/60



Some Concepts of Fixed-Point Theory

Let D be a set, (D,C) be a poset and f be a function f: D — D.

Definition
An element d € D is a fixed-point of f iff

f(d) =d.

Preliminary Concepts 44/60



Some Concepts of Fixed-Point Theory

Let D be a set, (D,C) be a poset and f be a function f: D — D.
Definition
An element d € D is a fixed-point of f iff

f(d) =d.

Definition

The least/greatest fixed-point of f is least/greatest among the fixed-points of f.

Preliminary Concepts 45/60



Some Concepts of Fixed-Point Theory

Let D be a set, (D,C) be a poset and f be a function f: D — D.
Definition
An element d € D is a fixed-point of f iff
J(d) = d.
Definition
The least/greatest fixed-point of f is least/greatest among the fixed-points of f.

That is, d € D is the least/greatest fixed-point of f iff:
o f(d)=d and
o Vo.f(x)=x=dCz /Vo.flzr)=c=2xCd.

Preliminary Concepts 46/60



Some Concepts of Fixed-Point Theory

Theorem

Let (D,C) be a poset and f : D — D be monotone. Under certain conditions f has a least
fixed-point (Winskel 1994) and a greatest fixed-point (Esik 2009).

Preliminary Concepts

47/60



Some Concepts of Fixed-Point Theory

Theorem

Let (D,C) be a poset and f : D — D be monotone. Under certain conditions f has a least
fixed-point (Winskel 1994) and a greatest fixed-point (Esik 2009).

Notation

The least and greatest fixed-points of f are denoted by px.f(x) and vz.f(z), respectively.

Preliminary Concepts

48/60



Introduction to Domain Theory

Motivation: Does A-calculus have models?

‘Historically my first model for the A-calculus was discovered in
1969 and details were provided in Scott (1972) (written in
1971). (Scott 1980, p. 226.).

Preliminary Concepts 49/60



Introduction to Domain Theory

Non-standard definitions
pre-domain, domain, complete partial order (cpo), w-cpo, bottomless w-cpo, Scott's domain,

Convention

domain = w-complete partial order

Preliminary Concepts 50/60



w-Complete Partial Orders

Definition
Let (D,C) be a poset. A w-chain of D is an increasing chain

dyCdyC--Cd, T

where d; € D.

Preliminary Concepts 51/60



w-Complete Partial Orders

Definition
Let (D,C) be a poset. The poset D is a w-complete partial order (w-cpo) iff (Plotkin 1992):

1. There is a least element L € D, thatis, Vx.L T z. The element L is called bottom.

2. For every increasing w-chain dy C d; C --- C d,, C -+, the least upper bound |_|n€w d, €D
exists.

Preliminary Concepts 52/60



w-Complete Partial Orders

Definition
Let A be a set. The symbol A, denotes the w-cpo whose elements A U {_L} are ordered by

zCy iff z=lorx=y.

The w-cpo A is called A lifted (Mitchell 1996).

Preliminary Concepts 53/60



w-Complete Partial Orders

Examples

The lifted unit type and the lifted Booleans B, are w-cpos.

() False  True
1 1L
data () = () data Bool = True | False

Preliminary Concepts

54/60



Example
The lifted natural numbers N, .

0 1 2..m ntl




w-Complete Partial Orders

Example
The lazy natural numbers w-cpo.
data Nat = Zero | Succ Nat

*inf

Preliminary Concepts

56/60



Admissible Properties

Definition
Let D be a w-cpo. A property P (a subset of D) is w-inductive (admissible) iff whenever
(Tp)new is an increasing sequence of elements in P, then | | _ =, is also in P, that is,

n

Vn € w. P(z,) = P <|_| acn) :

new

Preliminary Concepts 57/60



References

Harold Abelson and Gerald Jay Sussman [1984] (1996). Structure and Interpretation of Computer Pro-
grams. 2nd ed. MIT Press (cit. on pp. 11, 12, 23).

Martin Hotzel Escard6 (1993). On Lazy Natural Numbers with Applications to Computability Theory
and Functional Programming. SIGACT News 24.1, pp. 61-67. DOI: 10.1145/152992.153008 (cit. on
p. 38).

Zoltan Esik (2009). Fixed Point Theory. In: Handbook of Weighted Automata. Ed. by Manfred Droste,
Werner Kuich and Heiko Vogler. Monographs in Theoretical Computer Science. An EATCS Series.
Springer. Chap. 2 (cit. on pp. 47, 48).

Graham Hutton (2007). Programming in Haskell. Cambridge University Press (cit. on pp. 19, 20, 32).

Oleg Kiselyov and Chung-chieh Shan (2008). Interpreting Types as Abstract Values. Formosan Summer
School on Logic, Language and Computacion (FLOLAC 2008) (cit. on pp. 5-7).

Robin Milner (1978). A Theory of Type Polymorphism in Programming. Journal of Computer and System
Sciences 17.3, pp. 348-375. DOI: 10.1016/0022-0000(78)90014-4 (cit. on pp. 9, 10).

John C. Mitchell (1996). Foundations for Programming Languages. MIT Press (cit. on p. 53).

Preliminary Concepts 58/60


https://doi.org/10.1145/152992.153008
https://doi.org/10.1016/0022-0000(78)90014-4

References

Bryan O’Sullivan, John Goerzen and Don Stewart (2008). Real World Haskell. O'Really Media, Inc. (cit.
on pp. 19, 20).

Benjamin C. Pierce (2002). Types and Programming Languages. MIT Press (cit. on pp. 9, 10).

Gordon Plotkin (1992). Post-graduate Lecture Notes in Advance Domain Theory (Incorporating the
“Pisa Notes"). Electronic edition prepared by Yugo Kashiwagi and Hidetaka Kondoh. URL: http:
//homepages.inf.ed.ac.uk/gdp/ (visited on 29/07/2014) (cit. on p. 52).

Bertrand Russell [1903] (1938). The Principles of Mathematics. 2nd ed. W. W. Norton & Company, Inc
(cit. on pp. 2-4).

Dana Scott (1972). Continuous Lattices. In: Toposes, Algebraic Geometry and Logic. Ed. by F. W.
Lawvere. Vol. 274. Lecture Notes in Mathematics. Springer, pp. 97-136. DOI: 10.1007/BFb6073967
(cit. on p. 49).

— (1980). Lambda Calculus: Some Models, Some Philosophy. In: The Kleene Symposium. Ed. by Jon
Barwise, H. Jerome Keisler and Kenneth Kunen. Vol. 101. Studies in Logic and the Foundations of
Mathematics. North-Holland Publishing Company, pp. 223-265 (cit. on p. 49).

Joseph Stoy (1977). Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. MIT Press (cit. on pp. 11, 12).

Preliminary Concepts 59/60


http://homepages.inf.ed.ac.uk/gdp/
http://homepages.inf.ed.ac.uk/gdp/
https://doi.org/10.1007/BFb0073967

References

Glynn Winskel [1993] (1994). The Formal Semantics of Programming Languages. An Introduction. Found-
ations of Computing Series. Second printing. MIT Press (cit. on pp. 47, 48).

Preliminary Concepts 60/60



	Preliminary Concepts
	Types
	Referential Transparency
	Pure Functions
	Functions are First-Class Citizens
	Bottom
	Lazy Evaluation
	Strict and Non-Strict Functions
	Partial Orders Theory
	Fixed-Point Theory
	Domain Theory
	References


