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@ A type is a set of values (and operations on them).



What is a Type?

@ A type is a set of values (and operations on them).

e Types as ranges of significance of propositional functions. Let ¢(x) be a (unary)
propositional function. The type of ¢(x) is the range within which = must lie if ¢(z) is to
be a proposition (Russell 1938, Appendix B: The Doctrine of Types).

In modern terminology, Rusell’'s types are domains of propositional functions.
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What is a Type?

@ A type is a set of values (and operations on them).

e Types as ranges of significance of propositional functions. Let ¢(x) be a (unary)
propositional function. The type of ¢(x) is the range within which = must lie if ¢(z) is to
be a proposition (Russell 1938, Appendix B: The Doctrine of Types).

In modern terminology, Rusell’'s types are domains of propositional functions.

Example

Let ¢(x) be the propositional function ‘z is a prime number’. Then ¢(x) is a proposition
only when its argument is a natural number.

¢ : N — {False, True}

o(z) = x is a prime number.
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What is a Type?

@ ‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ (Kiselyov and Shan 2008, p. 8)
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an expression.’ (Kiselyov and Shan 2008, p. 8)

@ The propositions-as-types principle (Curry-Howard correspondence)
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What is a Type?

@ ‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ (Kiselyov and Shan 2008, p. 8)

@ The propositions-as-types principle (Curry-Howard correspondence)
e Homotopy Type Theory (HTT)

Propositions are types, but not all types are propositions (e.g. higher-order inductive
types)
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What is a Type?

Example (some Haskell's types)

Type variables: a, b

@ Type constants: Int, Integer, Char

o Function types: Int - Bool, (Char - Int) - Integer
@ Product types: (Int, Char), (a, b)

@ Disjoint union types:

data Sum a b = Inl a | Inr b
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@ Over-sized slogan:

‘Well-type programs cannot “go wrong”’ (Milner 1978, p. 348)



Type Systems

@ Over-sized slogan:

‘Well-type programs cannot “go wrong” (Milner 1978, p. 348)

@ 'A type system is a tractable syntactic method for proving the absence of certain program
behaviors by classifying phrases according to the kinds of values they compute.” (Pierce
2002, p. 1)
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Referential Transparency

‘We use [referential transparency| to refer to the fact of mathematics which says: The only
thing that matters about an expression is its value, and any subexpression can be replaced by
any other equal in value. (Stoy 1977, p. 5).
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Referential Transparency

‘We use [referential transparency| to refer to the fact of mathematics which says: The only

thing that matters about an expression is its value, and any subexpression can be replaced by
any other equal in value. (Stoy 1977, p. 5).

‘A language that supports the concept that “equals can be substituted for equals” in an
expression without changing the value of the expression is said to be referentially
transparent. (Abelson and Sussman 1996, p. 233).
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Referential Transparency

Example

The following C program prints hello, world twice.

#include <stdio.h>

int

main (void)

{
printf ("hello, world");
printf ("hello, world");
return 0;

}
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Referential Transparency

Example

The following C program prints hello, world once.

#include <stdio.h>

int
main (void)
{

int x;

x = printf ("hello, world");
X; X;

return 0;
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Referential Transparency

Example

The following Haskell program prints hello, world twice.

main :: I0 ()
main = putStr "hello, world" >> putStr "hello, world"
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Referential Transparency

In Haskell, given

let x = exp
in ... X ...0X ...

the meaning of ... x ... x ... isthesameas ...
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Referential Transparency

In Haskell, given

let x = exp

in ... X .. X L.,
the meaning of ... x ... x ... isthesameas ... exp ..
Example

The following Haskell program prints hello, world twice.

main :: I0 ()
main = let x : I0 ()

x = putStr "hello, world"
in x >> X
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Referential Transparency

Example

The following Haskell program prints hello, world twice.
main :: I0 ()
main = x >> X

where x :: I0 ()
X = putStr "hello, world"
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Pure Functions

Side effects

‘A side effect introduces a dependency between the global state of the system and the be-

haviour of a function... Side effects are essentially invisible inputs to, or outputs from, func-
tions.” (O'Sullivan, Goerzen and Stewart 2008, p. 27).
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Pure Functions

Side effects

‘A side effect introduces a dependency between the global state of the system and the be-
haviour of a function... Side effects are essentially invisible inputs to, or outputs from, func-
tions.” (O'Sullivan, Goerzen and Stewart 2008, p. 27).

Pure functions

‘Take all their input as explicit arguments, and produce all their output as explicit results. (Hut-
ton 2007, p. 87).
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Pure Functions

Are the following GHC 7.8.2 functions, pure functions?

maxBound : Int -- Prelude
0s @ String -- System.Info

*From: https://wiki.haskell.org/Referential transparency, 2014-02-25.
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https://wiki.haskell.org/Referential_transparency

Pure Functions

Are the following GHC 7.8.2 functions, pure functions?
maxBound :: Int -- Prelude
0s @ String -- System.Info

‘One perspective is that Haskell is not just one language (plus Prelude), but a family of
languages, parametrized by a collection of implementation-dependent parameters. Each such

language is RT, even if the collection as a whole might not be. Some people are satisfied with
situation and others are not." *

*From: https://wiki.haskell.org/Referential transparency, 2014-02-25.
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https://wiki.haskell.org/Referential_transparency

Functions are First-Class Citizens

Source: Abelson and Sussman (1996)

@ They can be passed as arguments and they can be returned as results (higher-order
functions)

@ They can be assigned to variables

@ They can be stored in data structures
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Bottom

Working with functions how handle undefined values yielded by partial functions or
non-terminating functions?

Example
head :: [a] - a
head (x : ) = X
head [] = ?
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Bottom

Working with functions how handle undefined values yielded by partial functions or
non-terminating functions?

Example
head :: [a] - a
head (x : ) = X
head [] = ?
Example

fst it (a, b) - a
fst (x, ) =X

ones : [Int]
ones = 1 : ones

fst (ones, 10) = ?
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Bottom

The L symbol represents the undefined value.
(L is represented in Haskell by the undefined keyword)
Example (first version)

head [] = undefined
fst (ones, 10) = undefined

*See ‘Hussling Haskell types into Hasse diagrams’ from Edward Z. Yang's blog on December 6, 2010.
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Bottom

The L symbol represents the undefined value.
(L is represented in Haskell by the undefined keyword)

Example (first version)

head []
fst (ones, 10)

undefined
undefined

Remark

The L value is polymorphic in Haskell.

Remark
The Haskell types are lifted types.*

*See ‘Hussling Haskell types into Hasse diagrams’ from Edward Z. Yang's blog on December 6, 2010.
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Example (second version)

head [| = L,
fst (ones, 10) = Ly

Therefore, head [] # fst (ones, 10).



Bottom

Example
foo : Int - Int
foo 0 =0

bar @ Int - Int
bar n = bar (n + 1)

foobar :: Int - Int
foobar n = if foo n == 0 then 1 else 2
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Bottom

Example
foo : Int - Int
foo 0 =0

bar @ Int - Int
bar n = bar (n + 1)

foobar :: Int - Int
foobar n = if foo n == 0 then 1 else 2

Can we replace foo by bar in foobar?
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Bottom

Example
foo : Int - Int
foo 0 =0

bar @ Int - Int
bar n = bar (n + 1)

foobar :: Int - Int
foobar n = if foo n == 0 then 1 else 2

Can we replace foo by bar in foobar? Only for n # 0.
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See slides for the chapter 12 on the book by Hutton (2007):
http://www.cs.nott.ac.uk/~gmh/book.html.


http://www.cs.nott.ac.uk/~gmh/book.html

Strict and Non-Strict Functions

Definition
Let f be a unary function. If f L = 1 then f is a strict function, otherwise it is a non-strict
function. The definition generalise to n-ary functions.

Example
The three function is non-strict.

three @ a - Int
three =3

three undefined =
three (head []) =
three (fst (ones, 10)) =
three (putStr "hello, world") =

w w w w
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Strict and Non-Strict Functions

Example

three i a -» Int
three =3

Non-strict reasoning...

(Vo € Int)(Vy)(x + three y = x + 3).
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Strict and Non-Strict Functions

Example
(Why Haskell hasn't a predefined recursive data type for natural numbers?)

data Nat = Zero | Succ Nat

Zero : Nat
Succ : Nat - Nat
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Strict and Non-Strict Functions

Example
(Why Haskell hasn't a predefined recursive data type for natural numbers?)

data Nat = Zero | Succ Nat

Zero : Nat
Succ : Nat - Nat

Is Succ a non-strict function?
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Strict and Non-Strict Functions

Example
(Why Haskell hasn't a predefined recursive data type for natural numbers?)

data Nat = Zero | Succ Nat

Zero : Nat
Succ : Nat - Nat

Is Succ a non-strict function?

We can define
inf :: Nat
inf = Succ inf
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Strict and Non-Strict Functions

Example (cont.)

Nat represents the lazy natural numbers, that is, Succ L # L (Escardé 1993).

sinf
0=1,
n + 1 = Succ n,
inf = n
new
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Partially Ordered Sets

Definition

A partially ordered set (poset) (D,C) is a set D on which the binary relation C satisfies the
following properties:

Ve.x Cx (reflexive)
VeVyVz.e CyAyCz=2C 2 (transitive)
VeVy.xCyAyCoe=x=y (antisymmetry)
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Partially Ordered Sets

Examples
e (Z,<) is a poset.
o Let a,b € Z with a # 0. The divisibility relation is defined by a | b := 3¢ (ac = b). Then
(Z*,]) is a poset.
e (P(A),C) is a poset.
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Partially Ordered Sets

Example
Hasse diagram for the poset ({1,2,3,4,6,8,12},|).

8
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Partially Ordered Sets

Example

Hasse diagram for the poset ({a,b,c}, ).

{a.b.c}

. c}./ >
<
\ /

0

{b, ¢}

{b}
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Monotone Functions

Definition
Let (D,C) and (D’,C’) be two posets. A function f: D — D’ is monotone iff

Vo vy x Ty = f(z) T f(y).
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Some Concepts of Fixed-Point Theory

Let D be a set, (D,C) be a poset and f be a function f: D — D.

Definition
An element d € D is a fixed-point of f iff

f(d) =d.
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Some Concepts of Fixed-Point Theory

Let D be a set, (D,C) be a poset and f be a function f: D — D.
Definition
An element d € D is a fixed-point of f iff

f(d) =d.

Definition

The least/greatest fixed-point of f is least/greatest among the fixed-points of f.
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Some Concepts of Fixed-Point Theory

Let D be a set, (D,C) be a poset and f be a function f: D — D.
Definition
An element d € D is a fixed-point of f iff
J(d) = d.
Definition
The least/greatest fixed-point of f is least/greatest among the fixed-points of f.

That is, d € D is the least/greatest fixed-point of f iff:
o f(d)=d and
o Vo.f(x)=x=dCz /Vo.flzr)=c=2xCd.
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Some Concepts of Fixed-Point Theory

Theorem

Let (D,C) be a poset and f : D — D be monotone. Under certain conditions f has a least
fixed-point (Winskel 1994) and a greatest fixed-point (Esik 2009).
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Some Concepts of Fixed-Point Theory

Theorem

Let (D,C) be a poset and f : D — D be monotone. Under certain conditions f has a least
fixed-point (Winskel 1994) and a greatest fixed-point (Esik 2009).

Notation

The least and greatest fixed-points of f are denoted by px.f(x) and vz.f(z), respectively.
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Introduction to Domain Theory

Motivation: Does A-calculus have models?

‘Historically my first model for the A-calculus was discovered in
1969 and details were provided in Scott (1972) (written in
1971). (Scott 1980, p. 226.).
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Introduction to Domain Theory

Non-standard definitions
pre-domain, domain, complete partial order (cpo), w-cpo, bottomless w-cpo, Scott's domain,

Convention

domain = w-complete partial order
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w-Complete Partial Orders

Definition
Let (D,C) be a poset. A w-chain of D is an increasing chain

dyCdyC--Cd, T

where d; € D.
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w-Complete Partial Orders

Definition
Let (D,C) be a poset. The poset D is a w-complete partial order (w-cpo) iff (Plotkin 1992):

1. There is a least element L € D, thatis, Vx.L T z. The element L is called bottom.

2. For every increasing w-chain dy C d; C --- C d,, C -+, the least upper bound |_|n€w d, €D
exists.
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w-Complete Partial Orders

Definition
Let A be a set. The symbol A, denotes the w-cpo whose elements A U {_L} are ordered by

zCy iff z=lorx=y.

The w-cpo A is called A lifted (Mitchell 1996).
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w-Complete Partial Orders

Examples

The lifted unit type and the lifted Booleans B, are w-cpos.

() False  True
1 1L
data () = () data Bool = True | False
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Example
The lifted natural numbers N, .

0 1 2..m ntl




w-Complete Partial Orders

Example
The lazy natural numbers w-cpo.
data Nat = Zero | Succ Nat

*inf
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Admissible Properties

Definition
Let D be a w-cpo. A property P (a subset of D) is w-inductive (admissible) iff whenever
(Tp)new is an increasing sequence of elements in P, then | | _ =, is also in P, that is,

n

Vn € w. P(z,) = P <|_| acn) :

new
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