Andrés Sicard-Ramirez

EAFIT University

Semester 2014-1

Administrative Information

Course web page

https://asr.github.io/courses/verification-of-functional-programs/2041-1

Evaluation

Homework 30%
Presentation 30%
Final project 40%

Introduction 2/31

https://asr.github.io/courses/verification-of-functional-programs/2041-1

Preliminaries

Notation

Sometimes we write Vza or V.« instead of V(). In V.« the scope of the quantifier extends
as far as possible, e.g. Vz.a A § means Vx(a A 3). Similar for 3.

Source code

All code in the examples have been tested with Agda 2.6.0.1, Coq 8.9.1 and Isabelle 2019 (June
2019).

Introduction 3/31

Motivation

U$22.2 to U$59.5 billion!™*

*Source: Tassey (2002).
Introduction 4/31

Motivational Example

‘Every functional programmer worth his salt knows how to reverse a list, debug the code, and
prove that list reversal is its own inverse.” (Swierstra and Altenkirch 2007, p. 25)

Introduction 5/31

Motivational Example

‘Every functional programmer worth his salt knows how to reverse a list, debug the code, and

prove that list reversal is its own inverse.” (Swierstra and Altenkirch 2007, p. 25)
Let's go (Haskell code) ...

(++) = [al - [a] - [a]
[1 ++ ys = ys
(X : xs) ++ ys = x : (xs ++ ys)

rev : [a] - [a]
rev [] =[]
rev (X : XS) = rev Xxs ++ [x]

To prove that the rev function is an involution.

Introduction

6/31

Example

Proving rev (rev xs) = xs.

Case [].

rev (rev []) rev [1 (rev.1l)

[1 (rev.1)

Motivational Example

Example
Proving rev (rev xs) = xs.
Case [].

rev (rev [1])

rev [1] (rev.l)
[1] (rev.1)

Case x:xs.

rev (rev (x : xs)) rev (rev xs ++ [x]) (rev.2)

=X : rev (rev xs) (auxiliary thm.)
= X : XS (IH)
Auxiliary theorem: rev (ys ++ [x]) = x : rev ys.

Introduction

8/31

Motivational Example

Observation

The auxiliary theorem
rev (ys ++ [x]) = X : rev ys
is a generalisation of the required result

rev (rev xs ++ [x]) = x : rev (rev Xs).

‘A standard method of generalisation is to look for a sub-expression that appears on both sides
of the equation and replace it by a variable.! (Bird and Wadler 1988, p. 124)

Introduction 9/31

Observations from the Motivational Example

@ Inductive data types = Structural induction for reasoning about them.

Introduction 10/31

Observations from the Motivational Example

@ Inductive data types = Structural induction for reasoning about them.

e Equational reasoning (process of replacing like for like using the substitutivity property
and the equivalence properties of the equality) based on the referential transparency.

Introduction 11/31

Observations from the Motivational Example

@ Inductive data types = Structural induction for reasoning about them.

e Equational reasoning (process of replacing like for like using the substitutivity property
and the equivalence properties of the equality) based on the referential transparency.

@ Generalisation of auxiliary theorem (including the inductive hypothesis) = Proofs by
induction are difficulty to automatise.

Introduction 12/31

@ What about 17

rev (rev L) =1

Questions from the Motivational Example

@ What about 17
rev (rev 1) =1

o Extend structural induction for handling L.

Introduction 14/31

Questions from the Motivational Example

@ What about L?
rev (rev 1) =1
o Extend structural induction for handling L.

o Choose a programming logic to behaviours of programs on total and finite elements
of data structures (Bove, Dybjer and Sicard-Ramirez 2009; Dybjer 1985).

Introduction 15/31

Questions from the Motivational Example

@ What about L?
rev (rev 1) =1
o Extend structural induction for handling L.

o Choose a programming logic to behaviours of programs on total and finite elements
of data structures (Bove, Dybjer and Sicard-Ramirez 2009; Dybjer 1985).

o ‘Morally" correct reasoning (Danielsson, J. Hughes, Jansson and Gibbons 2006).

Introduction 16/31

Questions from the Motivational Example

@ What about if xs is an infinite list?

?
rev (rev xs) = xs

Introduction 17/31

Questions from the Motivational Example

@ What about if xs is an infinite list?
rev (rev xs) = xs

o Co-inductive data types = Co-induction for reasoning about them (Gibbons and
Hutton 2005).

Introduction 18/31

Questions from the Motivational Example

@ What about if xs is an infinite list?
rev (rev xs) = xs

o Co-inductive data types = Co-induction for reasoning about them (Gibbons and
Hutton 2005).

o Choose a programming logic to behaviours of programs on total (finite or potentially
unbounded) elements of data structures (Bove, Dybjer and Sicard-Ramirez 2012;
Dybjer and Sander 1989).

Introduction 19/31

Questions from the Motivational Example

@ The rev function is O(n?). Why are we reasoning about it?

GHCi> rev [1..1077]
*xx Exception: stack overflow

Introduction 20/31

Questions from the Motivational Example

@ The rev function is O(n?). Why are we reasoning about it?

GHCi> rev [1..1077]
*xx Exception: stack overflow

The reverse function in the Data.List library (GHC 7.8.2) is O(n):
reverse 1 = rev 1 []
where
rev [1] a
rev (x:xs) a

a
rev xs (x:a)

Introduction 21/31

Questions from the Motivational Example

@ In relation to the formal verification of find or gcd algorithms versus the verification of
real programs:
‘They are differences in kind. Babysitting for a sleeping child for one hour does not scale
up to raising a family of ten—the problems are essentially, fundamentally
different.” (De Millo, Lipton and Perlis 1979, p. 278)

Introduction 22/31

Verification of Functional Programs: Research Areas

Area Research focuses on

Semantics definitions Defining new concepts

Transformation rules Programming transformations

Functional properties verification The input and output correspondence of pro-
grams

Non-functional properties verification Properties such as memory consumption or

parallel performance

Source: Achten, van Eekelen, Koopam and Morazan (2010).

Introduction 23/31

(Incomplete) Time Line

1949 Alan Turing (1949). Checking a Large Routine. In: Report of a Conference on High Speed
Automatic Calculating Machines, pp. 67-69.

1957 J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick, R. A. Nelson,
D. Sayre, P. B. Sheridan, H. Stern, |. Ziller, R. A. Hughes and R. Nutt (1957). The FORTRAN

Automatic Coding System. In: Proceedings Western Joint Computer Conference, pp. 188-198.
(FORTRAN)

1958 John McCarthy (1960). Recursive Functions of Symbolic Expressions and their Computation by
Machine, Part I. Communications of the ACM 3.4, pp. 184-195. DOI: 10.1145/367177.367199.
(Lisp)

1960 J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser,
K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden and M. Woodger (1960). Report
on the Algorithmic Language ALGOL 60. Communications of the ACM 3.5. Ed. by Peter Naur,
pp. 299-314. DOI: 10.1145/367236.367262. (ALGOL 60)

Introduction 24/31

https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367236.367262

(Incomplete) Time Line

1961 John McCarthy (1961). A Basis for a Mathematical Theory of Computation. In: Proceedings
Western Joint Computer Conference, pp. 225-238.

1966 Peter Naur (1966). Proof of Algorithms by General Snapshots. BIT 6.4, pp. 310-316.

1967 Robert W. Floyd (1967). Assigning Meanings to Programs. In: Mathematical Aspects of
Computer Science. Ed. by Jacob T. Schwartz. Vol. 19. Proceedings of Symposia in Applied
Mathematics, pp. 19-32.

1968 ‘In 1968, a NATO Conference on Software Engineering was held in Garmisch, Germany, ..For the
first time, a consensus emerged that there really was a software crisis, that programming was not
very well understood. (Gries 1981, p. 296)

1969 C. A. R. Hoare (1969). An Axiomatic Basis for Computer Programming. Communications of the
ACM 12.10, 576-580(3). DOI: 160.1145/363235.363259.

Introduction 25/31

https://doi.org/10.1145/363235.363259

(Incomplete) Time Line

1971 Per Martin-L6f (1971). A Theory of Types. Tech. rep. University of Stockholm.

1973 Per Martin-Lof (1975). About Models for Intuitionistic Type Theories and the Notion of
Definitional Equality. In: Proceedings of the Third Scandinavian Logic Symposium. Ed. by
Stig Kanger. Vol. 82. Studies in Logic and the Foundations of Mathematics. Elsevier, pp. 81-1009.

1979 Per Martin-Lo6f (1982). Constructive Mathematics and Computer Programming. In: Logic,
Methodology and Philosophy of Science VI (1979). Ed. by L. J. Cohen, J. Los, H. Pfeiffer and
K.-P. Podewski. Vol. 104. Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Company, pp. 153-175. DOI: 10.1016/50049-237X(09)70189-2.

1981 Bengt Nordstrom (1981). Programming in Constructive Set Theory: Some Examples. In:
Proceedings of the 1981 Conference on Functional Programming Languages and Computer
Architecture (FPCA 1981). ACM, pp. 141-154.

Introduction 26/31

https://doi.org/10.1016/S0049-237X(09)70189-2

References

Peter Achten, Marko van Eekelen, Pieter Koopam and Marco T. Morazin (2010). Trends in Trends in
Functional Programming 1999/2000 versus 2007/2008. Higher-Order Symbolic Computation 23.4,
pp. 465—487. DOI: 10.1007/510990-011-9074-z (cit. on p. 23).

J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser, K. Samelson, B.
Vauquois, J. H. Wegstein, A. van Wijngaarden and M. Woodger (1960). Report on the Algorithmic
Language ALGOL 60. Communications of the ACM 3.5. Ed. by Peter Naur, pp. 299-314. por:
10.1145/367236.367262 (cit. on p. 24).

J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick, R. A. Nelson, D. Sayre,
P. B. Sheridan, H. Stern, |. Ziller, R. A. Hughes and R. Nutt (1957). The FORTRAN Automatic
Coding System. In: Proceedings Western Joint Computer Conference, pp. 188-198 (cit. on p. 24).

Richard Bird and Philip Wadler (1988). Introduction to Functional Programming. Series in Computer
Sciences. Prentice Hall International (cit. on p. 9).

Ana Bove, Peter Dybjer and Andrés Sicard-Ramirez (2009). Embedding a Logical Theory of Constructions
in Agda. In: Proceedings of the 3rd Workshop on Programming Languages Meets Program Verification
(PLPV 2009), pp. 59-66 (cit. on pp. 13-16).

Introduction 27/31

https://doi.org/10.1007/s10990-011-9074-z
https://doi.org/10.1145/367236.367262

References

Ana Bove, Peter Dybjer and Andrés Sicard-Ramirez (2012). Combining Interactive and Automatic Reas-
oning in First Order Theories of Functional Programs. In: Foundations of Software Science and
Computation Structures (FoSSaCS 2012). Ed. by Lars Birkedal. Vol. 7213. Lecture Notes in Com-
puter Science. Springer, pp. 104-118 (cit. on pp. 17-19).

Nils Anders Danielsson, John Hughes, Patrik Jansson and Jeremy Gibbons (2006). Fast and Loose
Reasoning is Morally Correct. In: Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2006), pp. 206-217. DOI: 10.1145/1111037.1111056
(cit. on pp. 13-16).

Richard A. De Millo, Richard J. Lipton and Alan J. Perlis (1979). Social Processes and Proofs of Theorems
and Programs. Communications of the ACM 22.5, pp. 271-280. DOI: 10.1145/359104.359106 (cit.
on p. 22).

Peter Dybjer (1985). Program Verification in a Logical Theory of Constructions. In: Functional Program-
ming Languages and Computer Architecture. Ed. by Jean-Pierre Jouannaud. Vol. 201. Lecture Notes
in Computer Science. Springer, pp. 334-349. DOI: 10.1007/3-540-15975-4 46 (cit. on pp. 13-16).

Introduction 28/31

https://doi.org/10.1145/1111037.1111056
https://doi.org/10.1145/359104.359106
https://doi.org/10.1007/3-540-15975-4_46

References

Peter Dybjer and Herbert P. Sander (1989). A Functional Programming Approach to the Specification
and Verification of Concurrent Systems. Formal Aspects of Computing 1, pp. 303-319 (cit. on pp. 17—
19).

Robert W. Floyd (1967). Assigning Meanings to Programs. In: Mathematical Aspects of Computer
Science. Ed. by Jacob T. Schwartz. Vol. 19. Proceedings of Symposia in Applied Mathematics,
pp. 19-32 (cit. on p. 25).

Jeremy Gibbons and Graham Hutton (2005). Proof Methods for Corecursive Programs. Fundamenta
Informaticae XX, pp. 1-14 (cit. on pp. 17-19).

David Gries (1981). The Science of Programming. Monographs in Computer Science. Springer-Verlag.
DOI: 10.1007/978-1-4612-5983-1 (cit. on p. 25).

C. A. R. Hoare (1969). An Axiomatic Basis for Computer Programming. Communications of the ACM
12.10, 576-580(3). DOL: 10.1145/363235.363259 (cit. on p. 25).

Per Martin-Lof (1971). A Theory of Types. Tech. rep. University of Stockholm (cit. on p. 26).

— (1975). About Models for Intuitionistic Type Theories and the Notion of Definitional Equality. In:
Proceedings of the Third Scandinavian Logic Symposium. Ed. by Stig Kanger. Vol. 82. Studies in
Logic and the Foundations of Mathematics. Elsevier, pp. 81-109 (cit. on p. 26).

Introduction 29/31

https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1145/363235.363259

References

Per Martin-Lof (1982). Constructive Mathematics and Computer Programming. In: Logic, Methodology
and Philosophy of Science VI (1979). Ed. by L. J. Cohen, J. Los, H. Pfeiffer and K.-P. Podewski.
Vol. 104. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company,
pp. 153-175. DOI: 10.1016/50049-237X(09)70189-2 (cit. on p. 26).

John McCarthy (1960). Recursive Functions of Symbolic Expressions and their Computation by Machine,
Part I. Communications of the ACM 3.4, pp. 184-195. DOI: 10.1145/367177.367199 (cit. on p. 24).

— (1961). A Basis for a Mathematical Theory of Computation. In: Proceedings Western Joint Computer
Conference, pp. 225-238 (cit. on p. 25).

Peter Naur (1966). Proof of Algorithms by General Snapshots. BIT 6.4, pp. 310-316 (cit. on p. 25).

Bengt Nordstrdm (1981). Programming in Constructive Set Theory: Some Examples. In: Proceedings
of the 1981 Conference on Functional Programming Languages and Computer Architecture (FPCA
1981). ACM, pp. 141-154 (cit. on p. 26).

Wouter Swierstra and Thorsten Altenkirch (2007). Beauty in the Beast. A Functional Semantics for the
Awkward Squad. In: Proceedings of the ACM SIGPLAN 2007 Haskell Workshop, pp. 25-36 (cit. on
pp. 5, 6).

Introduction 30/31

https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1145/367177.367199

References

Gregory Tassey (2002). The Economic Impacts of Inadequate Infrastructure for Software Testing. Tech.
rep. National Institute of Standards and Technology. US Department of Commerce (cit. on p. 4).
Alan Turing (1949). Checking a Large Routine. In: Report of a Conference on High Speed Automatic

Calculating Machines, pp. 67-69 (cit. on p. 24).

Introduction 31/31

	Introduction
	Administrative Information
	Preliminaries
	Motivation
	Research Areas
	Time Line
	References

