
Verification of Functional Programs
Induction

Andrés Sicard-Ramírez

EAFIT University

Semester 2014-1

Source Code

All the source code have been tested with Agda 2.3.2, Coq 8.4pl3 and Isabelle 2013-2.

Induction 2/58

The Principle of Mathematical Induction

The principle of mathematical induction
Let 𝐴(𝑥) be a propositional function. To prove 𝐴(𝑥) for all 𝑥 ∈ ℕ, it suffices prove:

the basis 𝐴(0) and
the induction step, that 𝐴(𝑛) ⇒ 𝐴(𝑛 + 1), for all 𝑛 ∈ ℕ
(𝐴(𝑛) is called the induction hypothesis).

Induction 3/58

The Principle of Mathematical Induction

First-order logic version
Let 𝐴(𝑥) be a formula with free variable 𝑥. For each formula 𝐴(𝑥):

[𝐴(0) ∧ ∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)] ⇒ ∀𝑥.𝐴(𝑥) (axiom schema of induction)

Equivalent formulations

𝐴(0) ⇒ [(∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)) ⇒ ∀𝑥.𝐴(𝑥)] (by exportation)
𝐴(0) ⇒ (∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)) ⇒ ∀𝑥.𝐴(𝑥) (right-assoc. conditional)

Inference rule style

𝐴(0) ∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)
∀𝑥.𝐴(𝑥)

Induction 4/58

The Principle of Mathematical Induction

First-order logic version
Let 𝐴(𝑥) be a formula with free variable 𝑥. For each formula 𝐴(𝑥):

[𝐴(0) ∧ ∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)] ⇒ ∀𝑥.𝐴(𝑥) (axiom schema of induction)

Equivalent formulations

𝐴(0) ⇒ [(∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)) ⇒ ∀𝑥.𝐴(𝑥)] (by exportation)
𝐴(0) ⇒ (∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)) ⇒ ∀𝑥.𝐴(𝑥) (right-assoc. conditional)

Inference rule style

𝐴(0) ∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)
∀𝑥.𝐴(𝑥)

Induction 5/58

The Principle of Mathematical Induction

First-order logic version
Let 𝐴(𝑥) be a formula with free variable 𝑥. For each formula 𝐴(𝑥):

[𝐴(0) ∧ ∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)] ⇒ ∀𝑥.𝐴(𝑥) (axiom schema of induction)

Equivalent formulations

𝐴(0) ⇒ [(∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)) ⇒ ∀𝑥.𝐴(𝑥)] (by exportation)
𝐴(0) ⇒ (∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)) ⇒ ∀𝑥.𝐴(𝑥) (right-assoc. conditional)

Inference rule style

𝐴(0) ∀𝑥.𝐴(𝑥) ⇒ 𝐴(𝑥 + 1)
∀𝑥.𝐴(𝑥)

Induction 6/58

The Principle of Mathematical Induction

Higher-order logic
‘The adjetive ‘first-order’ is used to distinguish the languages... from those in which are pre-
dicates having other predicates or functions as arguments, or quantification over functions or
predicates, or both.’ (Mendelson 1997, p. 56)

Second-order logic version
Let 𝑋 be a predicate variable.

∀𝑋.𝑋(0) ⇒ (∀𝑥.𝑋(𝑥) ⇒ 𝑋(𝑥 + 1)) ⇒ ∀𝑥.𝑋(𝑥) (axiom of induction)

Induction 7/58

The Principle of Mathematical Induction

Higher-order logic
‘The adjetive ‘first-order’ is used to distinguish the languages... from those in which are pre-
dicates having other predicates or functions as arguments, or quantification over functions or
predicates, or both.’ (Mendelson 1997, p. 56)

Second-order logic version
Let 𝑋 be a predicate variable.

∀𝑋.𝑋(0) ⇒ (∀𝑥.𝑋(𝑥) ⇒ 𝑋(𝑥 + 1)) ⇒ ∀𝑥.𝑋(𝑥) (axiom of induction)

Induction 8/58

The Principle of Mathematical Induction

Historical remark
Dedekind (2005) and Peano (1967) axiom: 1 ∈ ℕ.

Induction 9/58

The Principle of Mathematical Induction

Remark
Coq generates the induction principles associated to the inductively defined (data) types.

Example (Coq)
The inductive data type for natural numbers.

Require Import Unicode.Utf8.

Inductive nat : Set :=
| O : nat
| S : nat → nat.

Continued on next slide
Induction 10/58

The Principle of Mathematical Induction

Example (continuation)
The Check nat_ind command yields:

nat_ind : ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

The Check nat_rec command yields:
nat_rec : ∀ P : nat → Set,

P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

The Check nat_rect command yields:
nat_rec : ∀ P : nat → Type,

P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Induction 11/58

The Principle of Mathematical Induction

Example (continuation)
The Check nat_ind command yields:

nat_ind : ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

The Check nat_rec command yields:
nat_rec : ∀ P : nat → Set,

P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

The Check nat_rect command yields:
nat_rec : ∀ P : nat → Type,

P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Induction 12/58

The Principle of Mathematical Induction

Example (continuation)
The Check nat_ind command yields:

nat_ind : ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

The Check nat_rec command yields:
nat_rec : ∀ P : nat → Set,

P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

The Check nat_rect command yields:
nat_rec : ∀ P : nat → Type,

P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Induction 13/58

The Principle of Mathematical Induction

Implementation remark
What happen if instead of using

Inductive nat : Set := O : nat | S : nat → nat

we renamed the data type nat by
Inductive P : Set := O : P | S : P → P

or we renamed the data constructor S by
Inductive nat : Set := O : nat | P : nat → nat

?
Source: McBride and McKinna (2004)

Induction 14/58

The Principle of Mathematical Induction

Remark
Isabelle also generates the induction principles associated to the inductively defined (data) types.

Example (Isabelle)
The inductive data type for natural numbers.

datatype nat = Z | S nat

The print_theorems command yields (among others):
nat.induct: ?P Z ⇒ ∀x. ?P x ⇒ ?P (S x)) ⇒ ?P ?nat

Induction 15/58

The Principle of Mathematical Induction

Remark
Isabelle also generates the induction principles associated to the inductively defined (data) types.

Example (Isabelle)
The inductive data type for natural numbers.

datatype nat = Z | S nat

The print_theorems command yields (among others):
nat.induct: ?P Z ⇒ ∀x. ?P x ⇒ ?P (S x)) ⇒ ?P ?nat

Induction 16/58

The Principle of Mathematical Induction

Remark
Agda doesn’t generate the induction principles, but the user can use pattern matching on the
inductively defined (data) types.

Example (Agda)
The inductive data type for natural numbers.

data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ

Continued on next slide
Induction 17/58

The Principle of Mathematical Induction

Example (continuation)
The principle of mathematical induction.

ℕ-ind : (A : ℕ → Set) →
A zero →
(∀ n → A n → A (succ n)) →
∀ n → A n

ℕ-ind A A0 h zero = A0
ℕ-ind A A0 h (succ n) = h n (ℕ-ind A A0 h n)

Induction 18/58

The Principle of Mathematical Induction

Remark
In Agda, Coq and Isabelle, the ‘axiom of induction’ is not an axiom

(the introduction rules
induce the induction principles).

Induction 19/58

The Principle of Mathematical Induction

Remark
In Agda, Coq and Isabelle, the ‘axiom of induction’ is not an axiom (the introduction rules
induce the induction principles).

Induction 20/58

Course-of-Values Induction

Course-of-values induction (strong or complete induction)
Let 𝐴(𝑥) be a propositional function. To prove 𝐴(𝑥) for all 𝑥 ∈ ℕ, it is enough to prove:

(∀0 ≤ 𝑘 < 𝑛)(𝐴(𝑘) ⇒ 𝐴(𝑛)), for all 𝑛 ∈ ℕ.

Induction 21/58

Course-of-Values Induction

Example
The Fibonacci numbers are defined by 𝐹0 = 0, 𝐹1 = 1 and
𝐹𝑘+2 = 𝐹𝑘 + 𝐹𝑘+1, so 𝐹 = {0, 1, 1, 2, 3, 5, 8, 13, 21, … }.

Let Φ and Φ̂ be the roots of the equation 𝑥2 − 𝑥 − 1:

Φ = 1 +
√

5
2 and Φ̂ = 1 −

√
5

2 ,

so Φ2 = Φ + 1 and Φ̂2 = Φ̂ + 1. Then (Bird and Wadler 1988, p. 107.)

𝐹𝑘 = 1√
5(Φ𝑘 − Φ̂𝑘), for all 𝑘 ∈ ℕ.

Induction 22/58

Course-of-Values Induction

Example
The Fibonacci numbers are defined by 𝐹0 = 0, 𝐹1 = 1 and
𝐹𝑘+2 = 𝐹𝑘 + 𝐹𝑘+1, so 𝐹 = {0, 1, 1, 2, 3, 5, 8, 13, 21, … }.

Let Φ and Φ̂ be the roots of the equation 𝑥2 − 𝑥 − 1:

Φ = 1 +
√

5
2 and Φ̂ = 1 −

√
5

2 ,

so Φ2 = Φ + 1 and Φ̂2 = Φ̂ + 1. Then (Bird and Wadler 1988, p. 107.)

𝐹𝑘 = 1√
5(Φ𝑘 − Φ̂𝑘), for all 𝑘 ∈ ℕ.

Induction 23/58

Mathematical and Course-of-Values Induction

Theorem
Mathematical induction and course-of-values induction are equivalent (Winskel 2010).

Induction 24/58

Structural Induction

Structural induction
Let 𝐴(𝑋) be a propositional function about the structures 𝑋 that are defined by some recurs-
ive/inductive definition.

To prove 𝐴(𝑋) for all the structures 𝑋, it suffices prove (Hopcroft, Motwani and Ullman 2007):
𝐴(𝑋) for the basis structure(s) of 𝑋 and
given a structure 𝑋 whose recursive/inductive definition says is formed from 𝑌1, … , 𝑌𝑘,
that 𝐴(𝑋) assuming that the properties 𝐴(𝑌1), … , 𝐴(𝑌𝑘) hold.

Induction 25/58

Structural Induction

Structural induction
Let 𝐴(𝑋) be a propositional function about the structures 𝑋 that are defined by some recurs-
ive/inductive definition.
To prove 𝐴(𝑋) for all the structures 𝑋, it suffices prove (Hopcroft, Motwani and Ullman 2007):

𝐴(𝑋) for the basis structure(s) of 𝑋 and

given a structure 𝑋 whose recursive/inductive definition says is formed from 𝑌1, … , 𝑌𝑘,
that 𝐴(𝑋) assuming that the properties 𝐴(𝑌1), … , 𝐴(𝑌𝑘) hold.

Induction 26/58

Structural Induction

Structural induction
Let 𝐴(𝑋) be a propositional function about the structures 𝑋 that are defined by some recurs-
ive/inductive definition.
To prove 𝐴(𝑋) for all the structures 𝑋, it suffices prove (Hopcroft, Motwani and Ullman 2007):

𝐴(𝑋) for the basis structure(s) of 𝑋 and
given a structure 𝑋 whose recursive/inductive definition says is formed from 𝑌1, … , 𝑌𝑘,
that 𝐴(𝑋) assuming that the properties 𝐴(𝑌1), … , 𝐴(𝑌𝑘) hold.

Induction 27/58

Structural Induction for Lists

Example (Coq)
The parametric inductive data type.

Require Import Unicode.Utf8.

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A → list A → list A.

The induction principle.
list_ind : ∀ (A : Type) (P : list A → Prop),

P (nil A) →
(∀ (a : A) (l : list A), P l → P (cons A a l)) →
∀ l : list A, P l

Induction 28/58

Structural Induction for Lists

Example (Coq)
The parametric inductive data type.

Require Import Unicode.Utf8.

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A → list A → list A.

The induction principle.
list_ind : ∀ (A : Type) (P : list A → Prop),

P (nil A) →
(∀ (a : A) (l : list A), P l → P (cons A a l)) →
∀ l : list A, P l

Induction 29/58

Structural Induction for Lists

Example (Isabelle)
The polymorphic inductive data type.

datatype 'a list = Nil | Cons 'a "'a list"

The induction principle.
list.induct: ?P Nil ⇒ ∀x1 x2. ?P x2 ⇒ ?P (Cons x1 x2)) ⇒

?P ?list

Induction 30/58

Structural Induction for Lists

Example (Isabelle)
The polymorphic inductive data type.

datatype 'a list = Nil | Cons 'a "'a list"

The induction principle.
list.induct: ?P Nil ⇒ ∀x1 x2. ?P x2 ⇒ ?P (Cons x1 x2)) ⇒

?P ?list

Induction 31/58

Structural Induction for Lists

Example (Agda)
The parametric inductive data type.

data List (A : Set) : Set where
[] : List A
∷ : A → List A → List A

The induction principle.
List-ind : {A : Set} (B : List A → Set) →

B [] →
((x : A) (xs : List A) → B xs → B (x ∷ xs)) →
∀ xs → B xs

List-ind B B[] h [] = B[]
List-ind B B[] h (x ∷ xs) = h x xs (List-ind B B[] h xs)

Induction 32/58

Structural Induction for Lists

Example (Agda)
The parametric inductive data type.

data List (A : Set) : Set where
[] : List A
∷ : A → List A → List A

The induction principle.
List-ind : {A : Set} (B : List A → Set) →

B [] →
((x : A) (xs : List A) → B xs → B (x ∷ xs)) →
∀ xs → B xs

List-ind B B[] h [] = B[]
List-ind B B[] h (x ∷ xs) = h x xs (List-ind B B[] h xs)

Induction 33/58

Well-Founded Induction

Definition
Let ≺ be a binary relation on a set 𝐴. The relation ≺ is a well-founded relation iff every
non-empty subset 𝑆 ⊆ 𝐴 has a minimal element, that is,

(∀𝑆 ⊆ 𝐴)[𝑆 ≠ ∅ ⇒ (∃𝑚 ∈ 𝑆)(∀𝑠 ∈ 𝑆)(𝑠 ⊀ 𝑚)].

Definition (Well-founded induction)
Let ≺ be a well-founded relation on a set 𝐴 and 𝐴(𝑥) a propositional function. To prove 𝐴(𝑥)
for all 𝑎 ∈ 𝐴, it suffices prove:

(∀𝑏 ≺ 𝑎)(𝐴(𝑏) ⇒ 𝐴(𝑎)), for all 𝑎 ∈ 𝐴.

Induction 34/58

Well-Founded Induction

Definition
Let ≺ be a binary relation on a set 𝐴. The relation ≺ is a well-founded relation iff every
non-empty subset 𝑆 ⊆ 𝐴 has a minimal element, that is,

(∀𝑆 ⊆ 𝐴)[𝑆 ≠ ∅ ⇒ (∃𝑚 ∈ 𝑆)(∀𝑠 ∈ 𝑆)(𝑠 ⊀ 𝑚)].

Definition (Well-founded induction)
Let ≺ be a well-founded relation on a set 𝐴 and 𝐴(𝑥) a propositional function. To prove 𝐴(𝑥)
for all 𝑎 ∈ 𝐴, it suffices prove:

(∀𝑏 ≺ 𝑎)(𝐴(𝑏) ⇒ 𝐴(𝑎)), for all 𝑎 ∈ 𝐴.

Induction 35/58

Well-Founded Induction

Example
Let ≺ be the well-founded relation on ℕ given by the graph of the successor function
𝑛 ↦ 𝑛 + 1.

Then mathematical induction is a special case of well-founded induction.

Example
Let ≺ be the well-founded relation ‘less than’ on ℕ.
Then course-of-values induction is a special case of well-founded induction.

Induction 36/58

Well-Founded Induction

Example
Let ≺ be the well-founded relation on ℕ given by the graph of the successor function
𝑛 ↦ 𝑛 + 1.
Then mathematical induction is a special case of well-founded induction.

Example
Let ≺ be the well-founded relation ‘less than’ on ℕ.
Then course-of-values induction is a special case of well-founded induction.

Induction 37/58

Well-Founded Induction

Example
Let ≺ be the well-founded relation on ℕ given by the graph of the successor function
𝑛 ↦ 𝑛 + 1.
Then mathematical induction is a special case of well-founded induction.

Example
Let ≺ be the well-founded relation ‘less than’ on ℕ.

Then course-of-values induction is a special case of well-founded induction.

Induction 38/58

Well-Founded Induction

Example
Let ≺ be the well-founded relation on ℕ given by the graph of the successor function
𝑛 ↦ 𝑛 + 1.
Then mathematical induction is a special case of well-founded induction.

Example
Let ≺ be the well-founded relation ‘less than’ on ℕ.
Then course-of-values induction is a special case of well-founded induction.

Induction 39/58

Well-Founded Induction

Example
‘If we take ≺ to be the relation between expressions such that 𝑎 ≺ 𝑏 holds iff 𝑎 is an
immediate sub-expression of 𝑏 we obtain the principle of structural induction as a special case
of well-founded induction.’ (Winskel 2010, p. 93)

Induction 40/58

Empty Type

In type theory 𝑎 ∶ 𝐴 denotes that 𝑎 is a term (or proof term) of type 𝐴.

Under the proposition-as-types principle, the empty type represents the false (absurdity or
contradiction) proposition (Sørensen and Urzyczyn 2006).
Therefore e : EmptyType represents a contradiction in our formalisation.

Induction 41/58

Empty Type

In type theory 𝑎 ∶ 𝐴 denotes that 𝑎 is a term (or proof term) of type 𝐴.
Under the proposition-as-types principle, the empty type represents the false (absurdity or
contradiction) proposition (Sørensen and Urzyczyn 2006).

Therefore e : EmptyType represents a contradiction in our formalisation.

Induction 42/58

Empty Type

In type theory 𝑎 ∶ 𝐴 denotes that 𝑎 is a term (or proof term) of type 𝐴.
Under the proposition-as-types principle, the empty type represents the false (absurdity or
contradiction) proposition (Sørensen and Urzyczyn 2006).
Therefore e : EmptyType represents a contradiction in our formalisation.

Induction 43/58

Empty Type

Example (Agda)
data ⊥ : Set where

⊥-elim : {A : Set} → ⊥ → A
⊥-elim () -- The absurd pattern.

Induction 44/58

Empty Type

Example (Coq)
(From the standard library)

Inductive Empty_set : Set :=.

Empty_set_rect : ∀ (P : Empty_set → Type) (e : Empty_set), P e

Theorem emptySetElim {A : Set}(e : Empty_set) : A.
apply (Empty_set_rect (fun _ => A) e).

Qed.

Theorem emptySetElim' {A : Set}(e : Empty_set) : A.
elim e.

Qed.

Induction 45/58

Empty Type

Example (Coq)
(From the standard library)

Inductive Empty_set : Set :=.

Empty_set_rect : ∀ (P : Empty_set → Type) (e : Empty_set), P e

Theorem emptySetElim {A : Set}(e : Empty_set) : A.
apply (Empty_set_rect (fun _ => A) e).

Qed.

Theorem emptySetElim' {A : Set}(e : Empty_set) : A.
elim e.

Qed.

Induction 46/58

Empty Type

Example (Coq)
(From the standard library)

Inductive Empty_set : Set :=.

Empty_set_rect : ∀ (P : Empty_set → Type) (e : Empty_set), P e

Theorem emptySetElim {A : Set}(e : Empty_set) : A.
apply (Empty_set_rect (fun _ => A) e).

Qed.

Theorem emptySetElim' {A : Set}(e : Empty_set) : A.
elim e.

Qed.

Induction 47/58

Strictly Positive Inductive Types

Remark
The inductive types can be defined/represented as least fixed-points of appropriated functions
(functors).

Example
Let 1 be the unity type, and + and × be the operators for disjoint union and Cartesian
product, respectively. Then

Nat ≔ 𝜇𝑋.1 + 𝑋,
List 𝐴 ≔ 𝜇𝑋.1 + (𝐴 × 𝑋).

Induction 48/58

Strictly Positive Inductive Types

Remark
The inductive types can be defined/represented as least fixed-points of appropriated functions
(functors).

Example
Let 1 be the unity type, and + and × be the operators for disjoint union and Cartesian
product, respectively. Then

Nat ≔ 𝜇𝑋.1 + 𝑋,
List 𝐴 ≔ 𝜇𝑋.1 + (𝐴 × 𝑋).

Induction 49/58

Strictly Positive Inductive Types

Definition
‘The occurrence of a type variable is positive iff it occurs within an even number of left hand
sides of →-types, it is strictly positive iff it never occurs on the left hand side of a →-type.’ (Abel
and Altenkirch 2000, p. 21).

Induction 50/58

Strictly Positive Inductive Types

Definition
Let 𝜇𝑋.𝐹(𝑋) be an inductive type. The type 𝜇𝑋.𝐹(𝑋) is a strictly positive type if 𝑋 occurs
strictly positive in 𝐹(𝑋).

Positive types Negative types#
"

!Strictly positive types

Proof assistants
Agda, Coq and Isabelle accept only strictly positive inductive types.

Induction 51/58

Strictly Positive Inductive Types

Definition
Let 𝜇𝑋.𝐹(𝑋) be an inductive type. The type 𝜇𝑋.𝐹(𝑋) is a strictly positive type if 𝑋 occurs
strictly positive in 𝐹(𝑋).

Positive types Negative types#
"

!Strictly positive types

Proof assistants
Agda, Coq and Isabelle accept only strictly positive inductive types.

Induction 52/58

Strictly Positive Inductive Types

Some issues with non-strictly positive inductive types
Infinite unfolding
See source code in the course web page.

Proving absurdity
See source code in the course web page.

Induction 53/58

Strictly Positive Inductive Types

Some issues with non-strictly positive inductive types
Infinite unfolding
See source code in the course web page.
Proving absurdity
See source code in the course web page.

Induction 54/58

Strictly Positive Inductive Types

The following examples of inductive types∗ are rejected by Agda (Coq and Isabelle) because
they are not strictly positive inductive types.

Example (negative type)

D ≔ 𝜇𝑋.𝑋 → 𝑋
data D : Set where

lam : (D → D) → D

-- D is not strictly positive, because it occurs to the left
-- of an arrow in the type of the constructor lam in the
-- definition of D.

∗Adapted from the Coq’Art, Matthes’ PhD thesis and Agda’s source code.
Induction 55/58

Strictly Positive Inductive Types

Example (positive, non-strictly positive type)

P ≔ 𝜇𝑋.(𝑋 → 2) → 2
data P : Set where

p : ((P → Bool) → Bool) → P

-- P is not strictly positive, because it occurs to the left
-- of an arrow in the type of the constructor p in the
-- definition of P.

Induction 56/58

References

Andreas Abel and Thorsten Altenkirch (2000). A Predicative Strong Normalisation Proof for a Λ-Calculus
with Interleaving Inductive Types. In: Types for Proofs and Programs (TYPES 1999). Ed. by Thierry
Coquand et al. Vol. 1956. Lecture Notes in Computer Science. Springer, pp. 21–40 (cit. on p. 50).

Richard Bird and Philip Wadler (1988). Introduction to Functional Programming. Series in Computer
Sciences. Prentice Hall International (cit. on pp. 22, 23).

Richard Dedekind [1888] (2005). Was sind und was sollen die Zahlen? In: From Kant to Hilbert: A Source
Book in the Foundations of Mathematics. Vol. II. Clarendon Press, pp. 787–833 (cit. on p. 9).

John E. Hopcroft, Rajeev Motwani and Jefferey D. Ullman [1979] (2007). Introduction to Automata
Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on pp. 25–27).

Conor McBride and James McKinna (2004). Functional Pearl: I am not a Number—I am a Free Variable.
In: Proceedings of the ACM SIGPLAN 2004 Haskell Workshop, pp. 1–9 (cit. on p. 14).

Elliott Mendelson [1965] (1997). Introduction to Mathematical Logic. 4th ed. Chapman & Hall (cit. on
pp. 7, 8).

Induction 57/58

References

Giuseppe Peano [1889] (1967). The Principles of Arithmetic, Presented by a New Method. In: From Frege
to Gödel: A Source Book in Mathematical Logic, 1879–1931. Ed. by Jean van Heijenoort. Source
Books in the History of the Sciences. Translation of ‘Arithmetices principia, nova methodo exposita’
by the editor. Harvard University Press, pp. 83–97 (cit. on p. 9).

Morten-Heine Sørensen and Paul Urzyczyn (2006). Lectures on the Curry-Howard Isomorphism. Vol. 149.
Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on pp. 41–43).

Glynn Winskel (2010). Set Theory for Computer Science. (Cit. on pp. 24, 40).

Induction 58/58

	Induction
	Preliminaries
	Mathematical Induction
	Course-of-Values Induction
	Structural Induction
	Well-Founded Induction
	Empty Type
	Strictly Positive Inductive Types
	References

