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Introduction



Administrative Information
Textbook
Aho, A. V., Hopcroft, J. E. and Ullman, J. D. [1983] [1985]. Data Structures and Algorithms.
Reprinted with corrections. Addison-Wesley.

Other books
Brassard, G. and Bratley, P. [1996]. Fundamentals of Algorithmics. Prentice Hall.
Parberry, I. and Gasarch, W. [1994] [2002]. Problems on Algorithms. 2nd ed. Prentice
Hall.

Convention
The references to examples, exercises, figures, quotes or theorems correspond to those in the
textbook.

Examination
The exam will be on Tuesday, 2nd July.
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Course Content
Elementary algorithms
Analysis of algorithms
Abstract data types (lists, stacks and queues)
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Preliminaries
Notation and conventions for number sets

N = {0, 1, 2, . . .} (natural numbers)

Z = {. . . , −2, −1, 0, 1, 2, . . .} (integers)

Z+ = {1, 2, 3, . . .} (positive integers)

Q = { p/q | p, q ∈ Z and q ̸= 0 } (rational numbers)

R = (−∞, ∞) (real numbers)

R≥0 = [0, ∞) (non-negative real numbers)

R+ = (0, ∞) (positive real numbers)
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Preliminaries
Convention
All the logarithms are base 2.

Appendix
See in the appendix:

Floor and ceiling functions
Summation properties
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Elementary Algorithms



From Problems to Programs
Question
Can be any problem solved by a program?

No!
Limitations when specifying the problem (no precise specification)
Computation limitations (theoretical or practical)
Ethical considerations and regulations
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From Problems to Programs
Quote
‘Half the battle is knowing what problem to solve.’ (p. 1)

Steps when writing a computer program to solve a problem

Problem formulation and specification
Design of the solution
Implementation
Testing
Documentation
Evaluation
Maintenance

Remark
In software engineering the above steps are part of the software development life cycle.
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From Problems to Programs
The problem solving process
Problem solving stages.∗

∗Figure source: Fig. 1.9.
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From Problems to Programs
Definition
Informally, an algorithm is ‘a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time.’ (p. 2)

Question
Are missing the computers on the above definition of algorithm? No!
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From Problems to Programs
Definition
Informally, an algorithm is ‘a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time.’ (p. 2)

Question
What is an instruction?

Remark
Any informal definition of algorithm necessary will be imprecise (but the above definition is
enough for our course).
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From Problems to Programs
Definition
Informally, an algorithm is ‘a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time.’ (p. 2)

Discussion
Is any computer program an algorithm?
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From Problems to Programs
Correctness of an algorithm

partial correctness := if an answer is returned it will be correct

total correctness := partial correctness + termination

Elementary Algorithms 21/155



Programming Languages
Some paradigms of programming

Imperative/object-oriented: Describe computation in terms of state-transforming opera-
tions such as assignment. Programming is done with statements.

Logic: Predicate calculus as a programming language. Programming is done with sentences.

Functional: Describe computation in terms of (mathematical) functions. Programming is
done with expressions.

Examples

Imperative/OO


C
C++
Java
Python

Logic
{

CLP(R)
Prolog

Functional


Erlang
Haskell
ML
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Programming Languages
Discussion
Does the algorithm for solving a problem depend of the programming language used for imple-
menting it?
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Pseudo-Code

We shall write algorithms using pseudo-code.

Example
See pseudo-code entry on Wikipedia.∗

∗https://en.wikipedia.org/wiki/Pseudocode.
Elementary Algorithms 24/155
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Pseudo-Code
Conventions
Based on the conventions used in [Cormen, Leiserson, Rivest and Stein 2009, pp. 20-22]:

Indentation indicates block (e.g. for loop, while loop, if-else statement) structure instead
of conventional indicators such as begin and end statements.
Assignation is denoted by the symbol ‘:=’.
Basic data types (e.g. integers, reals, booleans and characters) parameters to a procedure
are passed by value.
Compound data types (e.g. arrays) and abstract data types (e.g. lists, stacks and queues)
parameters to a procedure are passed by reference.
The symbols ‘//’ and ‘▷’ denote a commentary.
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Pseudo-Code
Example
Pseudo-code for calculating the factorial of a number (recursive version).

factorialR(n : N)
1 if n ≤ 1
2 return 1
3 else
4 return n ∗ factorialR(n − 1)
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Pseudo-Code
Example
Pseudo-code for calculating the factorial of a number (iterative version).

factorialI(n : N)
1 fac : Z+

2 fac := 1
3 for i := 1 to n
4 fac := fac ∗ i
5 return fac

Remark
Recursive algorithms versus iterative algorithms.
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Pseudo-Code
Exercise
Assume the parameter n in the function below is a positive power of 2, i.e. n = 2, 4, 8, 16, . . . .
Give the formula that expresses the value of the variable count in terms of the value of n when
the function terminates (Exercise 1.17).

mistery(n : N)
1 count, x : N
2 count := 0
3 x := 2
4 while x < n
5 x := 2 ∗ x
6 count := count + 1
7 return count
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Pseudo-Code
Exercise
Which is the value returned by the mystery function? Hint: Keep y fixed. From [Parberry
and Gasarch 2002, Exercise 257].

mystery(y : R, z : N)
x : R
x := 1
while z > 0

if z is odd
x := x ∗ y

z := ⌊z/2⌋
y := y2

return x
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Pseudo-Code
Example
Brassard and Bratley [1996] describe an algorithm for multiplying two positive integers which
does not use any multiplication tables. The algorithm is called multiplication a la russe.∗

russe(m : Z+, n : Z+)
1 result : N
2 result := 0
3 repeat
4 if m is odd
5 result := result + n
6 m := ⌊m/2⌋
7 n := n + n
8 until m == 0
9 return result

∗In Brassard and Bratley [1996], the condition in Line 8 is m == 1, which is wrong.
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Pseudo-Code
Exercise
Test the russe algorithm on some inputs.
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Sorting
Introduction
A sorting algorithm is an algorithm that puts elements of list according to some linear (total)
order. Sorting algorithms are fundamental in Computer Science.
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Sorting
Bubble sort (first version)

bubbleSort(A : Array [1 . . n])
1 ▷ Sorts array A into increasing order.
2 for i := 1 to n − 1
3 for j := n downto i + 1
4 if A[j − 1] > A[j]
5 ▷ Swap A[j − 1] and A[j].
6 temp := A[j − 1]
7 A[j − 1] := A[j]
8 A[j] := temp
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Sorting
Bubble sort (second version)
Since a procedure swap is very common in sorting algorithms, we rewrite the bubble sort al-
gorithm calling this procedure.

swap(A : Array, i : N, j : N)
1 ▷ Exchanges A[i] and A[j].
2 temp := A[i]
3 A[i] := A[j]
4 A[j] := temp

bubbleSort(A : Array [1 . . n])
1 ▷ Sorts array A into increasing order.
2 for i := 1 to n − 1
3 for j := n downto i + 1
4 if A[j − 1] > A[j]
5 swap(A, j − 1, j)
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Problem: Setting Traffic Light Cycles
Problem
To design an optimal traffic light for an intersection of roads (Example 1.1).

An instance of the problem
In the figure, roads C and E are one-way, the others two way.∗

∗Figure source: Fig. 1.1.
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Problem: Setting Traffic Light Cycles
Mathematical model for the problem
We can model the problem via a graph of incompatible turns.

Some questions about the model
What is a graph? Is the graph directed or undirected in our model? Do we need graphs with or
without loops? What about parallel edges?
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Problem: Setting Traffic Light Cycles
Notation
Let A be a set. We denote the set of all k-subsets of A by [A]k.

Definition
A graph is an order pair G = (V, E) of disjoint sets such that E ⊆ [V ]2 [Diestel 2017].

Definition
The vertices and the edges (aristas) of a graph G = (V, E) are the elements of V and E,
respectively.

Notation
Let A be a set. The cardinality of A is denoted by |A|.
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Problem: Setting Traffic Light Cycles
Some remarks on our definition of graph

The edges in our graphs are undirected because {v, w} = {w, v}.

Since {v, v} ̸∈ [V ]2 because |{v, v}| = |{v}| = 1, our graphs have no loops.
Since the multiplicity of an element in a set is one, our graphs have no parallel edges.
A graph with undirected egdes, without loops and without parallel edges is also called a
simple graph in the literature. E.g. [Bondy and Murty 2008].
The sets V and E must be disjoint for ruling out ‘graphs’ like V = {a, b, {a, b}} and
E = {{a, b}}.
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Problem: Setting Traffic Light Cycles
Definition
Two vertices x, y of a graph G are adjacent or neighbours, iff {x, y} is an edge of G.
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Problem: Setting Traffic Light Cycles
Example
Graph of incompatible turns for the instance of our problem where the vertices represent turns
and whose edges represent turns cannot be performed simultaneously.

AB

BA

DA

EA

AC

BC BD

AD

DB

EB EC

DC

ED
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Problem: Setting Traffic Light Cycles
Definition
Let G = (V, E) be a graph and S be a set whose elements are the available colours.

A colouring of G is a function
c : V → S

such that c(v) ̸= c(w) whenever v and w are adjacent.
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Problem: Setting Traffic Light Cycles
Problem equivalence (initial version)
Our problem is equivalent to the problem of colouring the graph of incompatible turns using as
few colours as possible.

Definition
A k-colouring of a graph G is a colouring of G using at most k colours.

Definition
Let G be a graph and k be the smallest integer such that G has a k-colouring. This number k
is the chromatic number of G.

Problem equivalence (final version)
Our problem is equivalent to the problem of finding the chromatic number of the graph of
incompatible turns.
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Problem: Setting Traffic Light Cycles
Some remarks about our new problem

The problem is a NP-complete problem.

Is a good (no necessarily optimal) solution enough? If so, we could use a heuristic approach.
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Problem: Setting Traffic Light Cycles
Greedy heuristic
Description from p. 5:

One reasonable heuristic for graph coloring is the following ‘greedy’ algorithm. Initially we try to
color as many vertices as possible with the first color, then as many as possible of the uncolored
vertices with the second color, and so on. To color vertices with a new color, we perform the
following steps.

1. Select some uncoloured vertex and colour it with the new colour.
2. Scan the list of uncoloured vertices. For each uncoloured vertex, determine whether it has

an edge to any vertex already coloured with the new colour. If there is no such edge, colour
the present vertex with the new colour.
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Problem: Setting Traffic Light Cycles
Example (Our greedy heuristic can fail)
Colouring using the heuristic.

1 5 2

3

4

The chromatic number of graph is two.

1 5 2

3

4
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Problem: Setting Traffic Light Cycles
A solution using the greedy heuristic
We can solve our original problem using a traffic light controller with four phases (one by each
colour).

AB AC

BC BD

DA

EA

AD

DB

EB EC

BA

DC

ED
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Problem: Setting Traffic Light Cycles
Discussion
From the previous solution to a real program.
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Problem: Setting Traffic Light Cycles
Graph colouring applications
The graph colouring problem has an important number of applications. For example:

Scheduling problems (e.g. assigning jobs to time slots, assigning aircraft to flights, sports
scheduling, exams time table)
Register allocation
Sudoku puzzles
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Analysis of Algorithms



The Running Time of a Program
Discussion
My program is better than yours. What does this means?

Programs
Two contradictory goals: maintainability versus efficiency

Quote
‘Programmers must not only be aware of ways of making programs run fast, but must know
when to apply these techniques and when not to bother.’ (p. 16)

Analysis of Algorithms 64/155



The Running Time of a Program
Discussion
My program is better than yours. What does this means?

Programs
Two contradictory goals: maintainability versus efficiency

Quote
‘Programmers must not only be aware of ways of making programs run fast, but must know
when to apply these techniques and when not to bother.’ (p. 16)

Analysis of Algorithms 65/155



The Running Time of a Program
Discussion
My program is better than yours. What does this means?

Programs
Two contradictory goals: maintainability versus efficiency

Quote
‘Programmers must not only be aware of ways of making programs run fast, but must know
when to apply these techniques and when not to bother.’ (p. 16)

Analysis of Algorithms 66/155



The Running Time of a Program
Dependency
The running time of a program depends on factors as:

1. The input to the program.
2. The compiler used to create the program.
3. Features of set of instructions of machine.
4. The time complexity of the algorithm underlying the program.
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The Running Time of a Program
Remark
That the running time depends of the input usually means it depends of the size of the input:

So, we shall use a function
T (n) : N → R≥0

which will denote the running time of a program on inputs of size n.
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The Running Time of a Program
Question
Have all the inputs of size n the same running time?

No! The function T (n) is the worst-case running time of a program on inputs of size n.
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The Running Time of a Program
Question
Why not use a function

Tavg(n) : N → R≥0

which will denote the average running time of a program on inputs of size n?

Can you defined what is an average input for problem? (e.g. which is an average graph for the
graph colouring problem?)
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The Running Time of a Program
Remark

The function T (n) has no measure units because it depends of a compiler and a set of
instructions of machine.
We can think in T (n) as the number of instructions executed on an idealised computer.
If T (n) = n2 for some algorithm/program, we should talk about that the running time of
the algorithm/program is proportional to n2.
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Asymptotic Notations
Definition
Let g : N → R≥0 be a function. We define the set of functions big-oh of g(n), denoted
by O(g(n)), by

O(g(n)) := { f : N → R≥0 | there exist positive constants c ∈ R+

and n0 ∈ Z+ such that f(n) ≤ cg(n)
for all n ≥ n0 }.

Notation
Both ‘f(n) = O(g(n))’ and ‘f(n) is O(g(n))’ mean that f(n) ∈ O(g(n)).
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Asymptotic Notations
Remark

If f(n) ∈ O(g(n)) then function g(n) is an
upper bound on the growth rate of the
function f(n).∗

(b)

n
n0

f .n/ D O.g.n//

f .n/

cg.n/

∗Figure source: Cormen, Leiserson, Rivest and Stein [2009, Fig. 3.1b].
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Asymptotic Notations
Exercise
Let T (n) = (n + 1)2. To prove that T (n) ∈ O(n2). Hint: Choose n0 = 1 and c = 4.
(Example 1.4).

Question
If T (n) ∈ O(n2) then T (n) ∈ O(n3)?
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Asymptotic Notations
Example
See http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/.

Example
Note that

O(log n) ⊆ O(
√

n)
⊆ O(n)
⊆ O(n log n)
⊆ O(n2)
⊆ O(n3)
⊆ O(2n).
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Asymptotic Notations
Exercise
To prove that 6n2 is not O(n). Hint: Use proof by contradiction.
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Asymptotic Notations
Theorem
Let d be a natural number and T (n) a polynomial function of degree d, that is,

T : N → R

T (n) =
d∑

i=0
cin

i, with ci ∈ R and cd ̸= 0.

If cd > 0 then T (n) ∈ O(nd).∗

Example
T (n) = 42n3 + 1523n2 + 45728n is O(n3).

∗See, e.g. [Cormen, Leiserson, Rivest and Stein 2009].
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i=0
cin

i, with ci ∈ R and cd ̸= 0.

If cd > 0 then T (n) ∈ O(nd).∗

Example
T (n) = 42n3 + 1523n2 + 45728n is O(n3).

∗See, e.g. [Cormen, Leiserson, Rivest and Stein 2009].
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Asymptotic Notations
Example
Since any constant is a polynomial of degree 0, any constant function is O(n0), i.e. O(1).

Remark
Note the missing variable in O(1).∗

∗We could use the λ-calculus notation, i.e. O(λn.1).
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Asymptotic Notations
Definition
Let g : N → R≥0 be a function. We define the set of functions big-omega of g(n), denoted
by Ω(g(n)), by

Ω(g(n)) := { f : N → R≥0 | there exist positive constants c ∈ R+

and n0 ∈ Z+ such that f(n) ≥ cg(n)
for all n ≥ n0 }.

Notation
Both ‘f(n) = Ω(g(n))’ and ‘f(n) is Ω(g(n))’ mean that f(n) ∈ Ω(g(n)).
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Asymptotic Notations
Remark

If f(n) ∈ Ω(g(n)) then function g(n) is a lower
bound on the growth rate of the
function f(n).∗

(c)

n
n0

f .n/ D �.g.n//

f .n/

cg.n/

∗Figure source: Cormen, Leiserson, Rivest and Stein [2009, Fig. 3.1c].
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Asymptotic Notations
Example
To prove that the function

T : N → R≥0

T (n) =
{

n, if n is odd;
n2/100, if n is even;

is Ω(n). Hint: Choose c = 1/100 and n0 = 1.
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Asymptotic Notations
Theorem (the duality rule)
T (n) ∈ Ω(g(n)) iff g(n) ∈ O(T (n)).
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Asymptotic Notations
Remark
Note that the textbook uses an alternative definition for the big-omega notation.

Let g : N → R≥0 be a function. The set of functions big-omega of g(n), denoted by Ω(g(n)),
is defined by

Ω(g(n)) := { f : N → R≥0 | there exists a positive constant c ∈ R+

such that f(n) ≥ cg(n) for an infinite
number of values of n }.

We prefer the previous definition introduced instead of the definition in the textbook because it
is easier to work with it (e.g. it is transitive and it satisfies the duality rule).∗

∗See, e.g. Knuth [1976], Brassard and Bratley [1996] and Cormen, Leiserson, Rivest and Stein [2009].
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Asymptotic Notations
Theorem (rule for sums)
Let T1(n) and T2(n) be O(g1(n)) and O(g2(n)), respectively. Then

T1(n) + T2(n) is O(max(g1(n), g2(n))).

Example
The function 2n + 3n2 + 15n is O(2n).

Exercise
To prove the rule for sums.
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Asymptotic Notations
Theorem (rule for sums)
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Asymptotic Notations
Theorem (rule for products)
Let T1(n) and T2(n) be O(g1(n)) and O(g2(n)), respectively. Then

T1(n)T2(n) is O(g1(n)g2(n)).

Example
Whiteboard.

Exercise
To prove the rule for products.
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Asymptotic Notations
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Asymptotic Notations
Theorem (rule for products)
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The Tyranny of Growth Rate
Example
Running times of four programs.∗

∗Figure source: Fig. 1.11.
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The Tyranny of Growth Rate
Example
Comparison of several running time functions (supposing that one instruction runs in one mi-
crosecond).

T (n) n = 10 n = 50 n = 100 n = 1000
log n 3.3 µs 5.6 µs 6.4 µs 9.9 µs
n 10.0 µs 50.0 µs 100.0 µs 1.0 ms
n2 100.0 µs 2.5 ms 10.0 ms 1.0 s

2n 1.0 ms 35.8 y 4.0e16 y 3.4e287 y
3n 59.0 ms 2.3e10 y 1.6e34 y 4.2e463 y
n! 3.6 s 9.7e50 y 3.0e144 y 1.3e2554 y
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The Tyranny of Growth Rate
Definition
A tractable problem is a problem than can be solved by a computer algorithm that runs in
polynomial-time.
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The Tyranny of Growth Rate
Definition
A literal is an atomic formula (propositional variable) or the negation of an atomic formula.

Definition
A (propositional logic) formula F is in conjunctive normal form iff

F has the form F1 ∧ · · · ∧ Fn,

where each F1, . . . , Fn is a disjunction of literals.
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The Tyranny of Growth Rate
Example (3-SAT: An intractable problem)
To determine the satisfiability of a propositional formula in conjunctive normal form where each
disjunction of literals is limited to at most three literals.

The problem was proposed in Karp’s 21 NP-complete problems [Karp 1972].
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The Tyranny of Growth Rate
Improvements on 3-SAT deterministic algorithmic complexity∗

O(1.32793n) Liu [2018]
O(1.3303n) Makino, Tamaki and Yamamoto [2011, 2013]
O(1.3334n) Moser and Scheder [2011]
O(1.439n) Kutzkov and Scheder [2010]
O(1.465n) Scheder [2008]
O(1.473n) Brueggemann and Kern [2004]
O(1.481n) Dantsin, Goerdt, Hirsch, Kannan, Kleinberg, Papadimitriou, Raghavan and

Schöning [2002]
O(1.497n) Schiermeyer [1996]
O(1.505n) Kullmann [1999]
O(1.6181n) Monien and Speckenmeyer [1979, 1985]
O(2n) Brute-force search

∗Main sources: Hertli [2011, 2015]. Last updated: June 2019.
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The Tyranny of Growth Rate
Supercomputers
Machines from: www.top500.org∗

PetaFLOP (PFLOP): 1015 floating-point operations per second

Date Machine PFLOPs
2019-06 Summit 148.60
2018-11 Summit 143.50
2018-06 Summit 122.30
2016-06 Sunway TaihuLight 93.01
2013-06 Tianhe-2 33.86
2012-06 Blue Gene/Q 16.32
2011-06 K computer 8.16

∗Last updated: TOP500 List - June 2019.
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The Tyranny of Growth Rate
Simulation
Running 3-SAT times on different supercomputers using the faster deterministic algorithm,
i.e. T (1.32793n).

Machine PFLOPs n = 150 n = 200 n = 400
Summit (2019-06) 148.60 20.1 s 336.1 d 4.0e24 y
Summit (2018-11) 143.50 20.8 s 348.1 d 4.1e24 y
Summit (2018-06) 122.30 24.5 s 1.1 y 4.8e24 y
Sunway TaihuLight 93.01 32.2 s 1.5 y 6.4e24 y
Tianhe-2 33.86 1.5 m 4.1 y 1.7e25 y
Blue Gene/Q 16.32 3.1 m 8.4 y 3.6e25 y
K computer 8.16 6.1 m 16.8 y 7.3e25 y
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The Tyranny of Growth Rate
Simulation
Running 3-SAT times for different deterministic algorithms using the faster supercomputer,
i.e. 148.60 PFLOPs.

Complexity n = 150 n = 200 n = 400
T (1.32793n) 20.1 s 336.1 d 4.0e24 y
T (1.3303n) 26.3 s 1.3 y 8.1e24 y
T (1.3334n) 37.3 s 2.1 y 2.1e25 y
T (1.439n) 39.9 d 8.7e6 y 3.6e38 y
T (1.465n) 1.6 y 3.1e8 y 4.6e41 y
T (2n) 3.1e20 y 3.4e35 y 5.5e95 y
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Calculating the Running Time of a Program
General rules for the analysis of programs
The running time of

1. each assignment, read, and write statement is O(1),
2. a sequence of statements is the largest running time of any statement in the sequence (rule

for sums),
3. evaluate conditions is O(1),
4. an if-statement is the cost of evaluate the condition plus the running time of the body of

the if-statement (worst case running time).
5. an if-then-else construct is the cost of evaluate the condition plus the larger running time

of the true-body and the else-body (worst case running time).
6. a loop is the sum, over all times around the loop, of the running time of the body plus the

cost of evaluate the termination condition.
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Calculating the Running Time of a Program
Example (whiteboard)
Worst case running time of first version of bubble sort.
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Calculating the Running Time of a Program
Example (whiteboard)
Worst case running time of the mystery function (Exercise 1.12b).

mystery(n : N)
1 for i := 1 to n − 1
2 for j := i + 1 to n
3 for k := 1 to j
4 Some statement requiring O(1) time.
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Calculating the Running Time of a Program
General rules for the analysis of programs (continuation)

7. For calculating the running time of programs which call non-recursive procedures/functions,
we calculate first the running time of these non-recursive procedures/functions.
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Calculating the Running Time of a Program
Example (whiteboard)
Worst case running time of second version of bubble sort.
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Calculating the Running Time of a Program
General rules for the analysis of programs (continuation)

8. For calculating the running time of recursive programs, we get a recurrence for T (n) (i.e. an
equation for T (n)) and we solve the recurrence.
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Calculating the Running Time of a Program
Example (whiteboard)
Worst case running time of the factorialR function.
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Calculating the Running Time of a Program
Example (whiteboard)
Worst case running time of the buggy function (Exercise 1.12d).

buggy(n : N)
1 if n ≤ 1
2 return 1
3 else
4 return (buggy(n − 1) + buggy(n − 1))

Question
Why is the function buggy?
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Calculating the Running Time of a Program
Example (whiteboard)
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Calculating the Running Time of a Program
Exercise
The max(i : N, n : N) function returns the largest element in positions i through i + n − 1 of
an integer array A. You may assume for convenience that n is a power of 2. Let T (n) be the
worst-case time taken by the max function with second argument n. That is, n is the number
of elements of which the largest is found. Give, using the big-oh notation the worst case running
time of the max function (Exercise 1.18).

(continued on next slide)
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Calculating the Running Time of a Program
Exercise (continuation)

max(i : N, n : N)
1 m1, m2 : Z
2 if n == 1
3 return A[ i ]
4 else
5 m1 := max(i, ⌊n/2⌋)
6 m2 := max(i + ⌊n/2⌋, ⌊n/2⌋)
7 if m1 < m2
8 return m2
9 else

10 return m1
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Abstract Data Types
Definition
‘We can think of an abstract data type (ADT) as a mathematical model with a collection of
operations defined on that model.’ (p. 13)

Definition
‘The data type of a variable is the set of values that the variable may assume.’ (p. 13)

Definition
Data structures ‘are collections of variables, possibly of several different data types, connected
in various ways.’ (p. 13)
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Abstract Data Types
Some remarks

Abstract data type is a theoretical concept (design and analisis of algorithms).
Data structures are concrete representations of data (implementation of algorithms).
ADTs are implemented by data structures.

Example
Data types: Bool, char, integer, float and double

Data structures: Arrays and records

ADTs: Graphs, lists, queues, sets, stacks and trees
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Abstract Data Types
Advantages of using abstract data types

Generalisation

‘ADT’s are generalizations of primitive data types (integer, real, and so on), just as pro-
cedures are generalizations of primitive operations (+, −, and so on).’ (p. 11).
Encapsulation

‘The ADT encapsulates a data type in the sense that the definition of the type and all
operations on that type can be localized to one section of the program.’ (p. 11).
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Lists
Definition
A list is a sequence of zero or more elements of a given type

a1, a2, . . . , an

where,

n: length of the list, if n == 0 then the list is empty,

a1: first element of the list,

an: last element of the list,

the element ai is in the position i, and

elements are linearly ordered according to their position on the list.
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Lists
Operations on lists

end(L)

Returns the position following position n in an n-element list L.

insert(x, p, L)

Inserts x at position p in list L:

a1, a2, . . . , an → a1, a2, . . . , ap−1, x, ap+1, . . . , an

If p is end(L), then
a1, a2, . . . , an → a1, a2, . . . , an, x

If list L has no position p, the result is undefined.

(continued on next slide)
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Lists
Operations on lists
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(continued on next slide)
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Lists
Operations on lists (continuation)

locate(x, L)

Returns the position of x on list L.

If x appears more than once, then the position of the first occurrence is returned. If x does
not appear at all, then end(L) is returned.

retrieve(p, L)

Returns the element at position p on list L.

The result is undefined if p == end(L) or if L has no position p.

(continued on next slide)
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Lists
Operations on lists (continuation)

locate(x, L)

Returns the position of x on list L.

If x appears more than once, then the position of the first occurrence is returned. If x does
not appear at all, then end(L) is returned.

retrieve(p, L)

Returns the element at position p on list L.

The result is undefined if p == end(L) or if L has no position p.

(continued on next slide)
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Lists
Operations on lists (continuation)

next(p, L) and previous(p, L)

Return the positions following and preceding position p on list L.

If p is the last position on L, then next(p, L) = end(L). next is undefined if p is end(L).
previous is undefined if p is 1. Both functions are undefined if L has no position p.

delete(p, L)

Deletes the element at position p of list L:

a1, a2, . . . , an → a1, a2, . . . , ap−1, ap+1, . . . an−1

The result is undefined if L has no position p or if p = end(L).

(continued on next slide)
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Lists
Operations on lists (continuation)

next(p, L) and previous(p, L)
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(continued on next slide)
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Lists
Operations on lists

makeNull(L)

Causes L to become an empty list and returns position end(L).

first(L)

Returns the first position on list L.

If L is empty, the position returned is end(L).

printList(L)

Prints the elements of L in the order of occurrence.
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Lists
Operations on lists
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Lists
Example
A procedure for removing all duplicates of a list (from Fig 2.1).

purge(L : List)
1 ▷ Removes duplicate elements from list L.
2 p := first(L)
3 while p <> end(L)
4 q := next(p, L)
5 while q <> end(L)
6 if same(retrieve(p, L), retrieve(q, L))
7 delete(q, L)
8 else
9 q := next(q, L)

10 p := next(p, L)
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Lists
Exercise
Suppose that the list operations and the same function are O(1). To give the worst case running
time of the purge procedure. Hint: To suppose that the list has n elements.
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Lists
Exercise
‘The following procedure was intended to remove all occurrences of element x from list L.
Explain why it doesn’t always work and suggest a way to repair the procedure so it performs its
intended task.’ (Exercise 2.9)

delete(x : ElementType, L : List)
1 p : ElementType
2 p := first(L)
3 while p <> end(L)
4 if retrieve(p, L) == x
5 delete(p, L)
6 p := next(p, L)
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Stacks
Definition
‘A stack is a special kind of list in which all insertions and deletions take place at one end,
called the top.’ (p. 53).

Remark
Stacks are also named LIFO (last-input-first-output) lists.

Example
Whiteboard.
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Stacks
Definition
‘A stack is a special kind of list in which all insertions and deletions take place at one end,
called the top.’ (p. 53).

Remark
Stacks are also named LIFO (last-input-first-output) lists.

Example
Whiteboard.
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Stacks
Operations on stacks

makeNull(S). Makes stack S be an empty stack.
top(S). Returns the element at the top of stack S.
pop(S). Deletes the top element of the stack.
push(x, S). Inserts the element x at the top of stack S.
empty(S). Returns true if S is an empty stack; return false otherwise.
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Stacks
Example
Program for processing a line by a text editor using a stack (Example 2.2).

Special characters:
The character ‘#’ is the erase character (back-space key) which cancel the previous
uncanceled character, e.g.,

abc#d##e is ae.

The character ‘@’ is the kill character which cancel all previous characters on the current
line.

(continued on next slide)
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Stacks
Example (continuation)
edit()
1 S : Stack
2 c : Char
3 makeNull(S)
4 while not eoln
5 read(c)
6 if c == ‘#’
7 pop(S)
8 elseif c == ‘@’
9 makeNull(S)

10 else
11 ▷ The character c is an ordinary character.
12 push(c, S)
13 print S in reverse order
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Queues
Definition
‘A queue is another special kind of list, where items are inserted at one end (the rear) and
deleted at the other end (the front).’ (p. 56)

Remark
Queues are also named FIFO (first-input-first-output) lists.

Example
Whiteboard.
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Queues
Definition
‘A queue is another special kind of list, where items are inserted at one end (the rear) and
deleted at the other end (the front).’ (p. 56)

Remark
Queues are also named FIFO (first-input-first-output) lists.

Example
Whiteboard.
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Queues
Operations on queues

makeNull(Q). Makes queue Q an empty list.
front(Q). Returns the first element on queue Q.
enqueue(x, Q). Inserts element x at the end of queue Q.
dequeue(Q). Deletes the first element of Q

empty(Q). Returns true iff Q is an empty queue.
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Queues
Queue operations on terms of list operations
We can use list operations for defining queue operations.

front(Q) := retrieve(first(Q), Q),
enqueue(x, Q) := insert(x, end(Q), Q),

dequeue(Q) := delete(first(Q), Q).
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Floor and Ceiling Functions
Definition
The floor function is defined by

⌊·⌋ : R → Z
⌊x⌋ := that unique integer n such that n ≤ x < n + 1.

Definition
The ceiling function is defined by

⌈·⌉ : R → Z
⌈x⌉ := that unique integer n such that n − 1 < x ≤ n.
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Summation Properties
Definition
Let a1, a2, . . . , an be a sequence of numbers, where n is a positive integer. Recall the inductive
definition of the summation notation:

1∑
k=1

ak := a1,

n∑
k=1

ak :=
(

n−1∑
k=1

ak

)
+ an

= a1 + a2 + · · · + an−1 + an.
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Summation Properties
Properties

n∑
k=1

(ak + bk) =
n∑

k=1
ak +

n∑
k=1

bk (additive property),

n∑
k=1

cak = c
n∑

k=1
ak (homogeneous property),

n∑
k=1

(αak + βbk) = α
n∑

k=1
ak + β

n∑
k=1

bk (linearity property).
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Summation Properties
Properties

n∑
k=1

f(n) = nf(n),

n∑
k=1

ak =
i∑

k=1
ak +

n∑
k=i+1

ak.
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Summation Properties
Properties

n∑
k=1

k = n(n + 1)
2 ,

n∑
k=1

k2 = n(n + 1)(2n + 1)
6 ,

n∑
k=1

k3 =
(

n(n + 1)
2

)2
.
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