
ST0898 Levelling Course in Computation
Master in Data Sciences and Analytics

Andrés Sicard-Ramírez

Universidad EAFIT

June 2019

Introduction

Administrative Information
Textbook
Aho, A. V., Hopcroft, J. E. and Ullman, J. D. [1983] [1985]. Data Structures and Algorithms.
Reprinted with corrections. Addison-Wesley.

Other books
Brassard, G. and Bratley, P. [1996]. Fundamentals of Algorithmics. Prentice Hall.
Parberry, I. and Gasarch, W. [1994] [2002]. Problems on Algorithms. 2nd ed. Prentice
Hall.

Convention
The references to examples, exercises, figures, quotes or theorems correspond to those in the
textbook.

Examination
The exam will be on Tuesday, 2nd July.

Introduction 3/155

Course Content
Elementary algorithms
Analysis of algorithms
Abstract data types (lists, stacks and queues)

Introduction 4/155

Preliminaries
Notation and conventions for number sets

N = {0, 1, 2, . . .} (natural numbers)

Z = {. . . , −2, −1, 0, 1, 2, . . .} (integers)

Z+ = {1, 2, 3, . . .} (positive integers)

Q = { p/q | p, q ∈ Z and q ̸= 0 } (rational numbers)

R = (−∞, ∞) (real numbers)

R≥0 = [0, ∞) (non-negative real numbers)

R+ = (0, ∞) (positive real numbers)

Introduction 5/155

Preliminaries
Convention
All the logarithms are base 2.

Appendix
See in the appendix:

Floor and ceiling functions
Summation properties

Introduction 6/155

Elementary Algorithms

From Problems to Programs
Question
Can be any problem solved by a program?

No!
Limitations when specifying the problem (no precise specification)
Computation limitations (theoretical or practical)
Ethical considerations and regulations

Elementary Algorithms 8/155

From Problems to Programs
Question
Can be any problem solved by a program?

No!
Limitations when specifying the problem (no precise specification)
Computation limitations (theoretical or practical)
Ethical considerations and regulations

Elementary Algorithms 9/155

From Problems to Programs
Quote
‘Half the battle is knowing what problem to solve.’ (p. 1)

Steps when writing a computer program to solve a problem

Problem formulation and specification
Design of the solution
Implementation
Testing
Documentation
Evaluation
Maintenance

Remark
In software engineering the above steps are part of the software development life cycle.

Elementary Algorithms 10/155

From Problems to Programs
Quote
‘Half the battle is knowing what problem to solve.’ (p. 1)

Steps when writing a computer program to solve a problem

Problem formulation and specification
Design of the solution
Implementation
Testing
Documentation
Evaluation
Maintenance

Remark
In software engineering the above steps are part of the software development life cycle.

Elementary Algorithms 11/155

From Problems to Programs
Quote
‘Half the battle is knowing what problem to solve.’ (p. 1)

Steps when writing a computer program to solve a problem

Problem formulation and specification
Design of the solution
Implementation
Testing
Documentation
Evaluation
Maintenance

Remark
In software engineering the above steps are part of the software development life cycle.

Elementary Algorithms 12/155

From Problems to Programs
The problem solving process
Problem solving stages.∗

∗Figure source: Fig. 1.9.
Elementary Algorithms 13/155

From Problems to Programs
Definition
Informally, an algorithm is ‘a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time.’ (p. 2)

Question
Are missing the computers on the above definition of algorithm? No!

Elementary Algorithms 14/155

From Problems to Programs
Definition
Informally, an algorithm is ‘a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time.’ (p. 2)

Question
Are missing the computers on the above definition of algorithm?

No!

Elementary Algorithms 15/155

From Problems to Programs
Definition
Informally, an algorithm is ‘a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time.’ (p. 2)

Question
Are missing the computers on the above definition of algorithm? No!

Elementary Algorithms 16/155

From Problems to Programs
Definition
Informally, an algorithm is ‘a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time.’ (p. 2)

Question
What is an instruction?

Remark
Any informal definition of algorithm necessary will be imprecise (but the above definition is
enough for our course).

Elementary Algorithms 17/155

From Problems to Programs
Definition
Informally, an algorithm is ‘a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time.’ (p. 2)

Question
What is an instruction?

Remark
Any informal definition of algorithm necessary will be imprecise (but the above definition is
enough for our course).

Elementary Algorithms 18/155

From Problems to Programs
Definition
Informally, an algorithm is ‘a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time.’ (p. 2)

Question
What is an instruction?

Remark
Any informal definition of algorithm necessary will be imprecise (but the above definition is
enough for our course).

Elementary Algorithms 19/155

From Problems to Programs
Definition
Informally, an algorithm is ‘a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time.’ (p. 2)

Discussion
Is any computer program an algorithm?

Elementary Algorithms 20/155

From Problems to Programs
Correctness of an algorithm

partial correctness := if an answer is returned it will be correct

total correctness := partial correctness + termination

Elementary Algorithms 21/155

Programming Languages
Some paradigms of programming

Imperative/object-oriented: Describe computation in terms of state-transforming opera-
tions such as assignment. Programming is done with statements.

Logic: Predicate calculus as a programming language. Programming is done with sentences.

Functional: Describe computation in terms of (mathematical) functions. Programming is
done with expressions.

Examples

Imperative/OO


C
C++
Java
Python

Logic
{

CLP(R)
Prolog

Functional


Erlang
Haskell
ML

Elementary Algorithms 22/155

Programming Languages
Discussion
Does the algorithm for solving a problem depend of the programming language used for imple-
menting it?

Elementary Algorithms 23/155

Pseudo-Code

We shall write algorithms using pseudo-code.

Example
See pseudo-code entry on Wikipedia.∗

∗https://en.wikipedia.org/wiki/Pseudocode.
Elementary Algorithms 24/155

https://en.wikipedia.org/wiki/Pseudocode

Pseudo-Code
Conventions
Based on the conventions used in [Cormen, Leiserson, Rivest and Stein 2009, pp. 20-22]:

Indentation indicates block (e.g. for loop, while loop, if-else statement) structure instead
of conventional indicators such as begin and end statements.
Assignation is denoted by the symbol ‘:=’.
Basic data types (e.g. integers, reals, booleans and characters) parameters to a procedure
are passed by value.
Compound data types (e.g. arrays) and abstract data types (e.g. lists, stacks and queues)
parameters to a procedure are passed by reference.
The symbols ‘//’ and ‘▷’ denote a commentary.

Elementary Algorithms 25/155

Pseudo-Code
Example
Pseudo-code for calculating the factorial of a number (recursive version).

factorialR(n : N)
1 if n ≤ 1
2 return 1
3 else
4 return n ∗ factorialR(n − 1)

Elementary Algorithms 26/155

Pseudo-Code
Example
Pseudo-code for calculating the factorial of a number (iterative version).

factorialI(n : N)
1 fac : Z+

2 fac := 1
3 for i := 1 to n
4 fac := fac ∗ i
5 return fac

Remark
Recursive algorithms versus iterative algorithms.

Elementary Algorithms 27/155

Pseudo-Code
Example
Pseudo-code for calculating the factorial of a number (iterative version).

factorialI(n : N)
1 fac : Z+

2 fac := 1
3 for i := 1 to n
4 fac := fac ∗ i
5 return fac

Remark
Recursive algorithms versus iterative algorithms.

Elementary Algorithms 28/155

Pseudo-Code
Exercise
Assume the parameter n in the function below is a positive power of 2, i.e. n = 2, 4, 8, 16,
Give the formula that expresses the value of the variable count in terms of the value of n when
the function terminates (Exercise 1.17).

mistery(n : N)
1 count, x : N
2 count := 0
3 x := 2
4 while x < n
5 x := 2 ∗ x
6 count := count + 1
7 return count

Elementary Algorithms 29/155

Pseudo-Code
Exercise
Which is the value returned by the mystery function? Hint: Keep y fixed. From [Parberry
and Gasarch 2002, Exercise 257].

mystery(y : R, z : N)
x : R
x := 1
while z > 0

if z is odd
x := x ∗ y

z := ⌊z/2⌋
y := y2

return x

Elementary Algorithms 30/155

Pseudo-Code
Example
Brassard and Bratley [1996] describe an algorithm for multiplying two positive integers which
does not use any multiplication tables. The algorithm is called multiplication a la russe.∗

russe(m : Z+, n : Z+)
1 result : N
2 result := 0
3 repeat
4 if m is odd
5 result := result + n
6 m := ⌊m/2⌋
7 n := n + n
8 until m == 0
9 return result

∗In Brassard and Bratley [1996], the condition in Line 8 is m == 1, which is wrong.
Elementary Algorithms 31/155

Pseudo-Code
Exercise
Test the russe algorithm on some inputs.

Elementary Algorithms 32/155

Sorting
Introduction
A sorting algorithm is an algorithm that puts elements of list according to some linear (total)
order. Sorting algorithms are fundamental in Computer Science.

Elementary Algorithms 33/155

Sorting
Bubble sort (first version)

bubbleSort(A : Array [1 . . n])
1 ▷ Sorts array A into increasing order.
2 for i := 1 to n − 1
3 for j := n downto i + 1
4 if A[j − 1] > A[j]
5 ▷ Swap A[j − 1] and A[j].
6 temp := A[j − 1]
7 A[j − 1] := A[j]
8 A[j] := temp

Elementary Algorithms 34/155

Sorting
Bubble sort (second version)
Since a procedure swap is very common in sorting algorithms, we rewrite the bubble sort al-
gorithm calling this procedure.

swap(A : Array, i : N, j : N)
1 ▷ Exchanges A[i] and A[j].
2 temp := A[i]
3 A[i] := A[j]
4 A[j] := temp

bubbleSort(A : Array [1 . . n])
1 ▷ Sorts array A into increasing order.
2 for i := 1 to n − 1
3 for j := n downto i + 1
4 if A[j − 1] > A[j]
5 swap(A, j − 1, j)

Elementary Algorithms 35/155

Problem: Setting Traffic Light Cycles
Problem
To design an optimal traffic light for an intersection of roads (Example 1.1).

An instance of the problem
In the figure, roads C and E are one-way, the others two way.∗

∗Figure source: Fig. 1.1.
Elementary Algorithms 36/155

Problem: Setting Traffic Light Cycles
Mathematical model for the problem
We can model the problem via a graph of incompatible turns.

Some questions about the model
What is a graph? Is the graph directed or undirected in our model? Do we need graphs with or
without loops? What about parallel edges?

Elementary Algorithms 37/155

Problem: Setting Traffic Light Cycles
Mathematical model for the problem
We can model the problem via a graph of incompatible turns.

Some questions about the model
What is a graph? Is the graph directed or undirected in our model? Do we need graphs with or
without loops? What about parallel edges?

Elementary Algorithms 38/155

Problem: Setting Traffic Light Cycles
Notation
Let A be a set. We denote the set of all k-subsets of A by [A]k.

Definition
A graph is an order pair G = (V, E) of disjoint sets such that E ⊆ [V]2 [Diestel 2017].

Definition
The vertices and the edges (aristas) of a graph G = (V, E) are the elements of V and E,
respectively.

Notation
Let A be a set. The cardinality of A is denoted by |A|.

Elementary Algorithms 39/155

Problem: Setting Traffic Light Cycles
Notation
Let A be a set. We denote the set of all k-subsets of A by [A]k.

Definition
A graph is an order pair G = (V, E) of disjoint sets such that E ⊆ [V]2 [Diestel 2017].

Definition
The vertices and the edges (aristas) of a graph G = (V, E) are the elements of V and E,
respectively.

Notation
Let A be a set. The cardinality of A is denoted by |A|.

Elementary Algorithms 40/155

Problem: Setting Traffic Light Cycles
Notation
Let A be a set. We denote the set of all k-subsets of A by [A]k.

Definition
A graph is an order pair G = (V, E) of disjoint sets such that E ⊆ [V]2 [Diestel 2017].

Definition
The vertices and the edges (aristas) of a graph G = (V, E) are the elements of V and E,
respectively.

Notation
Let A be a set. The cardinality of A is denoted by |A|.

Elementary Algorithms 41/155

Problem: Setting Traffic Light Cycles
Some remarks on our definition of graph

The edges in our graphs are undirected because {v, w} = {w, v}.

Since {v, v} ̸∈ [V]2 because |{v, v}| = |{v}| = 1, our graphs have no loops.
Since the multiplicity of an element in a set is one, our graphs have no parallel edges.
A graph with undirected egdes, without loops and without parallel edges is also called a
simple graph in the literature. E.g. [Bondy and Murty 2008].
The sets V and E must be disjoint for ruling out ‘graphs’ like V = {a, b, {a, b}} and
E = {{a, b}}.

Elementary Algorithms 42/155

Problem: Setting Traffic Light Cycles
Some remarks on our definition of graph

The edges in our graphs are undirected because {v, w} = {w, v}.
Since {v, v} ̸∈ [V]2 because |{v, v}| = |{v}| = 1, our graphs have no loops.

Since the multiplicity of an element in a set is one, our graphs have no parallel edges.
A graph with undirected egdes, without loops and without parallel edges is also called a
simple graph in the literature. E.g. [Bondy and Murty 2008].
The sets V and E must be disjoint for ruling out ‘graphs’ like V = {a, b, {a, b}} and
E = {{a, b}}.

Elementary Algorithms 43/155

Problem: Setting Traffic Light Cycles
Some remarks on our definition of graph

The edges in our graphs are undirected because {v, w} = {w, v}.
Since {v, v} ̸∈ [V]2 because |{v, v}| = |{v}| = 1, our graphs have no loops.
Since the multiplicity of an element in a set is one, our graphs have no parallel edges.

A graph with undirected egdes, without loops and without parallel edges is also called a
simple graph in the literature. E.g. [Bondy and Murty 2008].
The sets V and E must be disjoint for ruling out ‘graphs’ like V = {a, b, {a, b}} and
E = {{a, b}}.

Elementary Algorithms 44/155

Problem: Setting Traffic Light Cycles
Some remarks on our definition of graph

The edges in our graphs are undirected because {v, w} = {w, v}.
Since {v, v} ̸∈ [V]2 because |{v, v}| = |{v}| = 1, our graphs have no loops.
Since the multiplicity of an element in a set is one, our graphs have no parallel edges.
A graph with undirected egdes, without loops and without parallel edges is also called a
simple graph in the literature. E.g. [Bondy and Murty 2008].

The sets V and E must be disjoint for ruling out ‘graphs’ like V = {a, b, {a, b}} and
E = {{a, b}}.

Elementary Algorithms 45/155

Problem: Setting Traffic Light Cycles
Some remarks on our definition of graph

The edges in our graphs are undirected because {v, w} = {w, v}.
Since {v, v} ̸∈ [V]2 because |{v, v}| = |{v}| = 1, our graphs have no loops.
Since the multiplicity of an element in a set is one, our graphs have no parallel edges.
A graph with undirected egdes, without loops and without parallel edges is also called a
simple graph in the literature. E.g. [Bondy and Murty 2008].
The sets V and E must be disjoint for ruling out ‘graphs’ like V = {a, b, {a, b}} and
E = {{a, b}}.

Elementary Algorithms 46/155

Problem: Setting Traffic Light Cycles
Definition
Two vertices x, y of a graph G are adjacent or neighbours, iff {x, y} is an edge of G.

Elementary Algorithms 47/155

Problem: Setting Traffic Light Cycles
Example
Graph of incompatible turns for the instance of our problem where the vertices represent turns
and whose edges represent turns cannot be performed simultaneously.

AB

BA

DA

EA

AC

BC BD

AD

DB

EB EC

DC

ED

Elementary Algorithms 48/155

Problem: Setting Traffic Light Cycles
Example
Graph of incompatible turns for the instance of our problem where the vertices represent turns
and whose edges represent turns cannot be performed simultaneously.

AB

BA

DA

EA

AC

BC BD

AD

DB

EB EC

DC

ED

Elementary Algorithms 49/155

Problem: Setting Traffic Light Cycles
Definition
Let G = (V, E) be a graph and S be a set whose elements are the available colours.

A colouring of G is a function
c : V → S

such that c(v) ̸= c(w) whenever v and w are adjacent.

Elementary Algorithms 50/155

Problem: Setting Traffic Light Cycles
Problem equivalence (initial version)
Our problem is equivalent to the problem of colouring the graph of incompatible turns using as
few colours as possible.

Definition
A k-colouring of a graph G is a colouring of G using at most k colours.

Definition
Let G be a graph and k be the smallest integer such that G has a k-colouring. This number k
is the chromatic number of G.

Problem equivalence (final version)
Our problem is equivalent to the problem of finding the chromatic number of the graph of
incompatible turns.

Elementary Algorithms 51/155

Problem: Setting Traffic Light Cycles
Problem equivalence (initial version)
Our problem is equivalent to the problem of colouring the graph of incompatible turns using as
few colours as possible.

Definition
A k-colouring of a graph G is a colouring of G using at most k colours.

Definition
Let G be a graph and k be the smallest integer such that G has a k-colouring. This number k
is the chromatic number of G.

Problem equivalence (final version)
Our problem is equivalent to the problem of finding the chromatic number of the graph of
incompatible turns.

Elementary Algorithms 52/155

Problem: Setting Traffic Light Cycles
Problem equivalence (initial version)
Our problem is equivalent to the problem of colouring the graph of incompatible turns using as
few colours as possible.

Definition
A k-colouring of a graph G is a colouring of G using at most k colours.

Definition
Let G be a graph and k be the smallest integer such that G has a k-colouring. This number k
is the chromatic number of G.

Problem equivalence (final version)
Our problem is equivalent to the problem of finding the chromatic number of the graph of
incompatible turns.

Elementary Algorithms 53/155

Problem: Setting Traffic Light Cycles
Problem equivalence (initial version)
Our problem is equivalent to the problem of colouring the graph of incompatible turns using as
few colours as possible.

Definition
A k-colouring of a graph G is a colouring of G using at most k colours.

Definition
Let G be a graph and k be the smallest integer such that G has a k-colouring. This number k
is the chromatic number of G.

Problem equivalence (final version)
Our problem is equivalent to the problem of finding the chromatic number of the graph of
incompatible turns.

Elementary Algorithms 54/155

Problem: Setting Traffic Light Cycles
Some remarks about our new problem

The problem is a NP-complete problem.

Is a good (no necessarily optimal) solution enough? If so, we could use a heuristic approach.

Elementary Algorithms 55/155

Problem: Setting Traffic Light Cycles
Some remarks about our new problem

The problem is a NP-complete problem.
Is a good (no necessarily optimal) solution enough? If so, we could use a heuristic approach.

Elementary Algorithms 56/155

Problem: Setting Traffic Light Cycles
Greedy heuristic
Description from p. 5:

One reasonable heuristic for graph coloring is the following ‘greedy’ algorithm. Initially we try to
color as many vertices as possible with the first color, then as many as possible of the uncolored
vertices with the second color, and so on. To color vertices with a new color, we perform the
following steps.

1. Select some uncoloured vertex and colour it with the new colour.
2. Scan the list of uncoloured vertices. For each uncoloured vertex, determine whether it has

an edge to any vertex already coloured with the new colour. If there is no such edge, colour
the present vertex with the new colour.

Elementary Algorithms 57/155

Problem: Setting Traffic Light Cycles
Example (Our greedy heuristic can fail)
Colouring using the heuristic.

1 5 2

3

4

The chromatic number of graph is two.

1 5 2

3

4

Elementary Algorithms 58/155

Problem: Setting Traffic Light Cycles
Example (Our greedy heuristic can fail)
Colouring using the heuristic.

1 5 2

3

4

The chromatic number of graph is two.

1 5 2

3

4

Elementary Algorithms 59/155

Problem: Setting Traffic Light Cycles
A solution using the greedy heuristic
We can solve our original problem using a traffic light controller with four phases (one by each
colour).

AB AC

BC BD

DA

EA

AD

DB

EB EC

BA

DC

ED

Elementary Algorithms 60/155

Problem: Setting Traffic Light Cycles
Discussion
From the previous solution to a real program.

Elementary Algorithms 61/155

Problem: Setting Traffic Light Cycles
Graph colouring applications
The graph colouring problem has an important number of applications. For example:

Scheduling problems (e.g. assigning jobs to time slots, assigning aircraft to flights, sports
scheduling, exams time table)
Register allocation
Sudoku puzzles

Elementary Algorithms 62/155

Analysis of Algorithms

The Running Time of a Program
Discussion
My program is better than yours. What does this means?

Programs
Two contradictory goals: maintainability versus efficiency

Quote
‘Programmers must not only be aware of ways of making programs run fast, but must know
when to apply these techniques and when not to bother.’ (p. 16)

Analysis of Algorithms 64/155

The Running Time of a Program
Discussion
My program is better than yours. What does this means?

Programs
Two contradictory goals: maintainability versus efficiency

Quote
‘Programmers must not only be aware of ways of making programs run fast, but must know
when to apply these techniques and when not to bother.’ (p. 16)

Analysis of Algorithms 65/155

The Running Time of a Program
Discussion
My program is better than yours. What does this means?

Programs
Two contradictory goals: maintainability versus efficiency

Quote
‘Programmers must not only be aware of ways of making programs run fast, but must know
when to apply these techniques and when not to bother.’ (p. 16)

Analysis of Algorithms 66/155

The Running Time of a Program
Dependency
The running time of a program depends on factors as:

1. The input to the program.
2. The compiler used to create the program.
3. Features of set of instructions of machine.
4. The time complexity of the algorithm underlying the program.

Analysis of Algorithms 67/155

The Running Time of a Program
Remark
That the running time depends of the input usually means it depends of the size of the input:

So, we shall use a function
T (n) : N → R≥0

which will denote the running time of a program on inputs of size n.

Analysis of Algorithms 68/155

The Running Time of a Program
Question
Have all the inputs of size n the same running time?

No! The function T (n) is the worst-case running time of a program on inputs of size n.

Analysis of Algorithms 69/155

The Running Time of a Program
Question
Have all the inputs of size n the same running time?

No! The function T (n) is the worst-case running time of a program on inputs of size n.

Analysis of Algorithms 70/155

The Running Time of a Program
Question
Why not use a function

Tavg(n) : N → R≥0

which will denote the average running time of a program on inputs of size n?

Can you defined what is an average input for problem? (e.g. which is an average graph for the
graph colouring problem?)

Analysis of Algorithms 71/155

The Running Time of a Program
Question
Why not use a function

Tavg(n) : N → R≥0

which will denote the average running time of a program on inputs of size n?

Can you defined what is an average input for problem? (e.g. which is an average graph for the
graph colouring problem?)

Analysis of Algorithms 72/155

The Running Time of a Program
Remark

The function T (n) has no measure units because it depends of a compiler and a set of
instructions of machine.
We can think in T (n) as the number of instructions executed on an idealised computer.
If T (n) = n2 for some algorithm/program, we should talk about that the running time of
the algorithm/program is proportional to n2.

Analysis of Algorithms 73/155

Asymptotic Notations
Definition
Let g : N → R≥0 be a function. We define the set of functions big-oh of g(n), denoted
by O(g(n)), by

O(g(n)) := { f : N → R≥0 | there exist positive constants c ∈ R+

and n0 ∈ Z+ such that f(n) ≤ cg(n)
for all n ≥ n0 }.

Notation
Both ‘f(n) = O(g(n))’ and ‘f(n) is O(g(n))’ mean that f(n) ∈ O(g(n)).

Analysis of Algorithms 74/155

Asymptotic Notations
Definition
Let g : N → R≥0 be a function. We define the set of functions big-oh of g(n), denoted
by O(g(n)), by

O(g(n)) := { f : N → R≥0 | there exist positive constants c ∈ R+

and n0 ∈ Z+ such that f(n) ≤ cg(n)
for all n ≥ n0 }.

Notation
Both ‘f(n) = O(g(n))’ and ‘f(n) is O(g(n))’ mean that f(n) ∈ O(g(n)).

Analysis of Algorithms 75/155

Asymptotic Notations
Remark

If f(n) ∈ O(g(n)) then function g(n) is an
upper bound on the growth rate of the
function f(n).∗

(b)

n
n0

f .n/ D O.g.n//

f .n/

cg.n/

∗Figure source: Cormen, Leiserson, Rivest and Stein [2009, Fig. 3.1b].
Analysis of Algorithms 76/155

Asymptotic Notations
Exercise
Let T (n) = (n + 1)2. To prove that T (n) ∈ O(n2). Hint: Choose n0 = 1 and c = 4.
(Example 1.4).

Question
If T (n) ∈ O(n2) then T (n) ∈ O(n3)?

Analysis of Algorithms 77/155

Asymptotic Notations
Exercise
Let T (n) = (n + 1)2. To prove that T (n) ∈ O(n2). Hint: Choose n0 = 1 and c = 4.
(Example 1.4).

Question
If T (n) ∈ O(n2) then T (n) ∈ O(n3)?

Analysis of Algorithms 78/155

Asymptotic Notations
Example
See http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/.

Example
Note that

O(log n) ⊆ O(
√

n)
⊆ O(n)
⊆ O(n log n)
⊆ O(n2)
⊆ O(n3)
⊆ O(2n).

Analysis of Algorithms 79/155

http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/

Asymptotic Notations
Example
See http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/.

Example
Note that

O(log n) ⊆ O(
√

n)
⊆ O(n)
⊆ O(n log n)
⊆ O(n2)
⊆ O(n3)
⊆ O(2n).

Analysis of Algorithms 80/155

http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/

Asymptotic Notations
Exercise
To prove that 6n2 is not O(n). Hint: Use proof by contradiction.

Analysis of Algorithms 81/155

Asymptotic Notations
Theorem
Let d be a natural number and T (n) a polynomial function of degree d, that is,

T : N → R

T (n) =
d∑

i=0
cin

i, with ci ∈ R and cd ̸= 0.

If cd > 0 then T (n) ∈ O(nd).∗

Example
T (n) = 42n3 + 1523n2 + 45728n is O(n3).

∗See, e.g. [Cormen, Leiserson, Rivest and Stein 2009].
Analysis of Algorithms 82/155

Asymptotic Notations
Theorem
Let d be a natural number and T (n) a polynomial function of degree d, that is,

T : N → R

T (n) =
d∑

i=0
cin

i, with ci ∈ R and cd ̸= 0.

If cd > 0 then T (n) ∈ O(nd).∗

Example
T (n) = 42n3 + 1523n2 + 45728n is O(n3).

∗See, e.g. [Cormen, Leiserson, Rivest and Stein 2009].
Analysis of Algorithms 83/155

Asymptotic Notations
Example
Since any constant is a polynomial of degree 0, any constant function is O(n0), i.e. O(1).

Remark
Note the missing variable in O(1).∗

∗We could use the λ-calculus notation, i.e. O(λn.1).
Analysis of Algorithms 84/155

Asymptotic Notations
Definition
Let g : N → R≥0 be a function. We define the set of functions big-omega of g(n), denoted
by Ω(g(n)), by

Ω(g(n)) := { f : N → R≥0 | there exist positive constants c ∈ R+

and n0 ∈ Z+ such that f(n) ≥ cg(n)
for all n ≥ n0 }.

Notation
Both ‘f(n) = Ω(g(n))’ and ‘f(n) is Ω(g(n))’ mean that f(n) ∈ Ω(g(n)).

Analysis of Algorithms 85/155

Asymptotic Notations
Definition
Let g : N → R≥0 be a function. We define the set of functions big-omega of g(n), denoted
by Ω(g(n)), by

Ω(g(n)) := { f : N → R≥0 | there exist positive constants c ∈ R+

and n0 ∈ Z+ such that f(n) ≥ cg(n)
for all n ≥ n0 }.

Notation
Both ‘f(n) = Ω(g(n))’ and ‘f(n) is Ω(g(n))’ mean that f(n) ∈ Ω(g(n)).

Analysis of Algorithms 86/155

Asymptotic Notations
Remark

If f(n) ∈ Ω(g(n)) then function g(n) is a lower
bound on the growth rate of the
function f(n).∗

(c)

n
n0

f .n/ D �.g.n//

f .n/

cg.n/

∗Figure source: Cormen, Leiserson, Rivest and Stein [2009, Fig. 3.1c].
Analysis of Algorithms 87/155

Asymptotic Notations
Example
To prove that the function

T : N → R≥0

T (n) =
{

n, if n is odd;
n2/100, if n is even;

is Ω(n). Hint: Choose c = 1/100 and n0 = 1.

Analysis of Algorithms 88/155

Asymptotic Notations
Theorem (the duality rule)
T (n) ∈ Ω(g(n)) iff g(n) ∈ O(T (n)).

Analysis of Algorithms 89/155

Asymptotic Notations
Remark
Note that the textbook uses an alternative definition for the big-omega notation.

Let g : N → R≥0 be a function. The set of functions big-omega of g(n), denoted by Ω(g(n)),
is defined by

Ω(g(n)) := { f : N → R≥0 | there exists a positive constant c ∈ R+

such that f(n) ≥ cg(n) for an infinite
number of values of n }.

We prefer the previous definition introduced instead of the definition in the textbook because it
is easier to work with it (e.g. it is transitive and it satisfies the duality rule).∗

∗See, e.g. Knuth [1976], Brassard and Bratley [1996] and Cormen, Leiserson, Rivest and Stein [2009].
Analysis of Algorithms 90/155

Asymptotic Notations
Theorem (rule for sums)
Let T1(n) and T2(n) be O(g1(n)) and O(g2(n)), respectively. Then

T1(n) + T2(n) is O(max(g1(n), g2(n))).

Example
The function 2n + 3n2 + 15n is O(2n).

Exercise
To prove the rule for sums.

Analysis of Algorithms 91/155

Asymptotic Notations
Theorem (rule for sums)
Let T1(n) and T2(n) be O(g1(n)) and O(g2(n)), respectively. Then

T1(n) + T2(n) is O(max(g1(n), g2(n))).

Example
The function 2n + 3n2 + 15n is O(2n).

Exercise
To prove the rule for sums.

Analysis of Algorithms 92/155

Asymptotic Notations
Theorem (rule for sums)
Let T1(n) and T2(n) be O(g1(n)) and O(g2(n)), respectively. Then

T1(n) + T2(n) is O(max(g1(n), g2(n))).

Example
The function 2n + 3n2 + 15n is O(2n).

Exercise
To prove the rule for sums.

Analysis of Algorithms 93/155

Asymptotic Notations
Theorem (rule for products)
Let T1(n) and T2(n) be O(g1(n)) and O(g2(n)), respectively. Then

T1(n)T2(n) is O(g1(n)g2(n)).

Example
Whiteboard.

Exercise
To prove the rule for products.

Analysis of Algorithms 94/155

Asymptotic Notations
Theorem (rule for products)
Let T1(n) and T2(n) be O(g1(n)) and O(g2(n)), respectively. Then

T1(n)T2(n) is O(g1(n)g2(n)).

Example
Whiteboard.

Exercise
To prove the rule for products.

Analysis of Algorithms 95/155

Asymptotic Notations
Theorem (rule for products)
Let T1(n) and T2(n) be O(g1(n)) and O(g2(n)), respectively. Then

T1(n)T2(n) is O(g1(n)g2(n)).

Example
Whiteboard.

Exercise
To prove the rule for products.

Analysis of Algorithms 96/155

The Tyranny of Growth Rate
Example
Running times of four programs.∗

∗Figure source: Fig. 1.11.
Analysis of Algorithms 97/155

The Tyranny of Growth Rate
Example
Comparison of several running time functions (supposing that one instruction runs in one mi-
crosecond).

T (n) n = 10 n = 50 n = 100 n = 1000
log n 3.3 µs 5.6 µs 6.4 µs 9.9 µs
n 10.0 µs 50.0 µs 100.0 µs 1.0 ms
n2 100.0 µs 2.5 ms 10.0 ms 1.0 s

2n 1.0 ms 35.8 y 4.0e16 y 3.4e287 y
3n 59.0 ms 2.3e10 y 1.6e34 y 4.2e463 y
n! 3.6 s 9.7e50 y 3.0e144 y 1.3e2554 y

Analysis of Algorithms 98/155

The Tyranny of Growth Rate
Definition
A tractable problem is a problem than can be solved by a computer algorithm that runs in
polynomial-time.

Analysis of Algorithms 99/155

The Tyranny of Growth Rate
Definition
A literal is an atomic formula (propositional variable) or the negation of an atomic formula.

Definition
A (propositional logic) formula F is in conjunctive normal form iff

F has the form F1 ∧ · · · ∧ Fn,

where each F1, . . . , Fn is a disjunction of literals.

Analysis of Algorithms 100/155

The Tyranny of Growth Rate
Example (3-SAT: An intractable problem)
To determine the satisfiability of a propositional formula in conjunctive normal form where each
disjunction of literals is limited to at most three literals.

The problem was proposed in Karp’s 21 NP-complete problems [Karp 1972].

Analysis of Algorithms 101/155

The Tyranny of Growth Rate
Improvements on 3-SAT deterministic algorithmic complexity∗

O(1.32793n) Liu [2018]
O(1.3303n) Makino, Tamaki and Yamamoto [2011, 2013]
O(1.3334n) Moser and Scheder [2011]
O(1.439n) Kutzkov and Scheder [2010]
O(1.465n) Scheder [2008]
O(1.473n) Brueggemann and Kern [2004]
O(1.481n) Dantsin, Goerdt, Hirsch, Kannan, Kleinberg, Papadimitriou, Raghavan and

Schöning [2002]
O(1.497n) Schiermeyer [1996]
O(1.505n) Kullmann [1999]
O(1.6181n) Monien and Speckenmeyer [1979, 1985]
O(2n) Brute-force search

∗Main sources: Hertli [2011, 2015]. Last updated: June 2019.
Analysis of Algorithms 102/155

The Tyranny of Growth Rate
Supercomputers
Machines from: www.top500.org∗

PetaFLOP (PFLOP): 1015 floating-point operations per second

Date Machine PFLOPs
2019-06 Summit 148.60
2018-11 Summit 143.50
2018-06 Summit 122.30
2016-06 Sunway TaihuLight 93.01
2013-06 Tianhe-2 33.86
2012-06 Blue Gene/Q 16.32
2011-06 K computer 8.16

∗Last updated: TOP500 List - June 2019.
Analysis of Algorithms 103/155

www.top500.org

The Tyranny of Growth Rate
Simulation
Running 3-SAT times on different supercomputers using the faster deterministic algorithm,
i.e. T (1.32793n).

Machine PFLOPs n = 150 n = 200 n = 400
Summit (2019-06) 148.60 20.1 s 336.1 d 4.0e24 y
Summit (2018-11) 143.50 20.8 s 348.1 d 4.1e24 y
Summit (2018-06) 122.30 24.5 s 1.1 y 4.8e24 y
Sunway TaihuLight 93.01 32.2 s 1.5 y 6.4e24 y
Tianhe-2 33.86 1.5 m 4.1 y 1.7e25 y
Blue Gene/Q 16.32 3.1 m 8.4 y 3.6e25 y
K computer 8.16 6.1 m 16.8 y 7.3e25 y

Analysis of Algorithms 104/155

The Tyranny of Growth Rate
Simulation
Running 3-SAT times for different deterministic algorithms using the faster supercomputer,
i.e. 148.60 PFLOPs.

Complexity n = 150 n = 200 n = 400
T (1.32793n) 20.1 s 336.1 d 4.0e24 y
T (1.3303n) 26.3 s 1.3 y 8.1e24 y
T (1.3334n) 37.3 s 2.1 y 2.1e25 y
T (1.439n) 39.9 d 8.7e6 y 3.6e38 y
T (1.465n) 1.6 y 3.1e8 y 4.6e41 y
T (2n) 3.1e20 y 3.4e35 y 5.5e95 y

Analysis of Algorithms 105/155

Calculating the Running Time of a Program
General rules for the analysis of programs
The running time of

1. each assignment, read, and write statement is O(1),
2. a sequence of statements is the largest running time of any statement in the sequence (rule

for sums),
3. evaluate conditions is O(1),
4. an if-statement is the cost of evaluate the condition plus the running time of the body of

the if-statement (worst case running time).
5. an if-then-else construct is the cost of evaluate the condition plus the larger running time

of the true-body and the else-body (worst case running time).
6. a loop is the sum, over all times around the loop, of the running time of the body plus the

cost of evaluate the termination condition.

Analysis of Algorithms 106/155

Calculating the Running Time of a Program
Example (whiteboard)
Worst case running time of first version of bubble sort.

Analysis of Algorithms 107/155

Calculating the Running Time of a Program
Example (whiteboard)
Worst case running time of the mystery function (Exercise 1.12b).

mystery(n : N)
1 for i := 1 to n − 1
2 for j := i + 1 to n
3 for k := 1 to j
4 Some statement requiring O(1) time.

Analysis of Algorithms 108/155

Calculating the Running Time of a Program
General rules for the analysis of programs (continuation)

7. For calculating the running time of programs which call non-recursive procedures/functions,
we calculate first the running time of these non-recursive procedures/functions.

Analysis of Algorithms 109/155

Calculating the Running Time of a Program
Example (whiteboard)
Worst case running time of second version of bubble sort.

Analysis of Algorithms 110/155

Calculating the Running Time of a Program
General rules for the analysis of programs (continuation)

8. For calculating the running time of recursive programs, we get a recurrence for T (n) (i.e. an
equation for T (n)) and we solve the recurrence.

Analysis of Algorithms 111/155

Calculating the Running Time of a Program
Example (whiteboard)
Worst case running time of the factorialR function.

Analysis of Algorithms 112/155

Calculating the Running Time of a Program
Example (whiteboard)
Worst case running time of the buggy function (Exercise 1.12d).

buggy(n : N)
1 if n ≤ 1
2 return 1
3 else
4 return (buggy(n − 1) + buggy(n − 1))

Question
Why is the function buggy?

Analysis of Algorithms 113/155

Calculating the Running Time of a Program
Example (whiteboard)
Worst case running time of the buggy function (Exercise 1.12d).

buggy(n : N)
1 if n ≤ 1
2 return 1
3 else
4 return (buggy(n − 1) + buggy(n − 1))

Question
Why is the function buggy?

Analysis of Algorithms 114/155

Calculating the Running Time of a Program
Exercise
The max(i : N, n : N) function returns the largest element in positions i through i + n − 1 of
an integer array A. You may assume for convenience that n is a power of 2. Let T (n) be the
worst-case time taken by the max function with second argument n. That is, n is the number
of elements of which the largest is found. Give, using the big-oh notation the worst case running
time of the max function (Exercise 1.18).

(continued on next slide)

Analysis of Algorithms 115/155

Calculating the Running Time of a Program
Exercise (continuation)

max(i : N, n : N)
1 m1, m2 : Z
2 if n == 1
3 return A[i]
4 else
5 m1 := max(i, ⌊n/2⌋)
6 m2 := max(i + ⌊n/2⌋, ⌊n/2⌋)
7 if m1 < m2
8 return m2
9 else

10 return m1

Analysis of Algorithms 116/155

Abstract Data Types

Abstract Data Types
Definition
‘We can think of an abstract data type (ADT) as a mathematical model with a collection of
operations defined on that model.’ (p. 13)

Definition
‘The data type of a variable is the set of values that the variable may assume.’ (p. 13)

Definition
Data structures ‘are collections of variables, possibly of several different data types, connected
in various ways.’ (p. 13)

Abstract Data Types 118/155

Abstract Data Types
Some remarks

Abstract data type is a theoretical concept (design and analisis of algorithms).
Data structures are concrete representations of data (implementation of algorithms).
ADTs are implemented by data structures.

Example
Data types: Bool, char, integer, float and double

Data structures: Arrays and records

ADTs: Graphs, lists, queues, sets, stacks and trees

Abstract Data Types 119/155

Abstract Data Types
Some remarks

Abstract data type is a theoretical concept (design and analisis of algorithms).
Data structures are concrete representations of data (implementation of algorithms).
ADTs are implemented by data structures.

Example
Data types: Bool, char, integer, float and double

Data structures: Arrays and records

ADTs: Graphs, lists, queues, sets, stacks and trees

Abstract Data Types 120/155

Abstract Data Types
Advantages of using abstract data types

Generalisation

‘ADT’s are generalizations of primitive data types (integer, real, and so on), just as pro-
cedures are generalizations of primitive operations (+, −, and so on).’ (p. 11).
Encapsulation

‘The ADT encapsulates a data type in the sense that the definition of the type and all
operations on that type can be localized to one section of the program.’ (p. 11).

Abstract Data Types 121/155

Lists
Definition
A list is a sequence of zero or more elements of a given type

a1, a2, . . . , an

where,

n: length of the list, if n == 0 then the list is empty,

a1: first element of the list,

an: last element of the list,

the element ai is in the position i, and

elements are linearly ordered according to their position on the list.

Abstract Data Types 122/155

Lists
Operations on lists

end(L)

Returns the position following position n in an n-element list L.

insert(x, p, L)

Inserts x at position p in list L:

a1, a2, . . . , an → a1, a2, . . . , ap−1, x, ap+1, . . . , an

If p is end(L), then
a1, a2, . . . , an → a1, a2, . . . , an, x

If list L has no position p, the result is undefined.

(continued on next slide)

Abstract Data Types 123/155

Lists
Operations on lists

end(L)

Returns the position following position n in an n-element list L.

insert(x, p, L)

Inserts x at position p in list L:

a1, a2, . . . , an → a1, a2, . . . , ap−1, x, ap+1, . . . , an

If p is end(L), then
a1, a2, . . . , an → a1, a2, . . . , an, x

If list L has no position p, the result is undefined.

(continued on next slide)

Abstract Data Types 124/155

Lists
Operations on lists (continuation)

locate(x, L)

Returns the position of x on list L.

If x appears more than once, then the position of the first occurrence is returned. If x does
not appear at all, then end(L) is returned.

retrieve(p, L)

Returns the element at position p on list L.

The result is undefined if p == end(L) or if L has no position p.

(continued on next slide)

Abstract Data Types 125/155

Lists
Operations on lists (continuation)

locate(x, L)

Returns the position of x on list L.

If x appears more than once, then the position of the first occurrence is returned. If x does
not appear at all, then end(L) is returned.

retrieve(p, L)

Returns the element at position p on list L.

The result is undefined if p == end(L) or if L has no position p.

(continued on next slide)

Abstract Data Types 126/155

Lists
Operations on lists (continuation)

next(p, L) and previous(p, L)

Return the positions following and preceding position p on list L.

If p is the last position on L, then next(p, L) = end(L). next is undefined if p is end(L).
previous is undefined if p is 1. Both functions are undefined if L has no position p.

delete(p, L)

Deletes the element at position p of list L:

a1, a2, . . . , an → a1, a2, . . . , ap−1, ap+1, . . . an−1

The result is undefined if L has no position p or if p = end(L).

(continued on next slide)

Abstract Data Types 127/155

Lists
Operations on lists (continuation)

next(p, L) and previous(p, L)

Return the positions following and preceding position p on list L.

If p is the last position on L, then next(p, L) = end(L). next is undefined if p is end(L).
previous is undefined if p is 1. Both functions are undefined if L has no position p.

delete(p, L)

Deletes the element at position p of list L:

a1, a2, . . . , an → a1, a2, . . . , ap−1, ap+1, . . . an−1

The result is undefined if L has no position p or if p = end(L).

(continued on next slide)

Abstract Data Types 128/155

Lists
Operations on lists

makeNull(L)

Causes L to become an empty list and returns position end(L).

first(L)

Returns the first position on list L.

If L is empty, the position returned is end(L).

printList(L)

Prints the elements of L in the order of occurrence.

Abstract Data Types 129/155

Lists
Operations on lists

makeNull(L)

Causes L to become an empty list and returns position end(L).

first(L)

Returns the first position on list L.

If L is empty, the position returned is end(L).

printList(L)

Prints the elements of L in the order of occurrence.

Abstract Data Types 130/155

Lists
Operations on lists

makeNull(L)

Causes L to become an empty list and returns position end(L).

first(L)

Returns the first position on list L.

If L is empty, the position returned is end(L).

printList(L)

Prints the elements of L in the order of occurrence.

Abstract Data Types 131/155

Lists
Example
A procedure for removing all duplicates of a list (from Fig 2.1).

purge(L : List)
1 ▷ Removes duplicate elements from list L.
2 p := first(L)
3 while p <> end(L)
4 q := next(p, L)
5 while q <> end(L)
6 if same(retrieve(p, L), retrieve(q, L))
7 delete(q, L)
8 else
9 q := next(q, L)

10 p := next(p, L)

Abstract Data Types 132/155

Lists
Exercise
Suppose that the list operations and the same function are O(1). To give the worst case running
time of the purge procedure. Hint: To suppose that the list has n elements.

Abstract Data Types 133/155

Lists
Exercise
‘The following procedure was intended to remove all occurrences of element x from list L.
Explain why it doesn’t always work and suggest a way to repair the procedure so it performs its
intended task.’ (Exercise 2.9)

delete(x : ElementType, L : List)
1 p : ElementType
2 p := first(L)
3 while p <> end(L)
4 if retrieve(p, L) == x
5 delete(p, L)
6 p := next(p, L)

Abstract Data Types 134/155

Stacks
Definition
‘A stack is a special kind of list in which all insertions and deletions take place at one end,
called the top.’ (p. 53).

Remark
Stacks are also named LIFO (last-input-first-output) lists.

Example
Whiteboard.

Abstract Data Types 135/155

Stacks
Definition
‘A stack is a special kind of list in which all insertions and deletions take place at one end,
called the top.’ (p. 53).

Remark
Stacks are also named LIFO (last-input-first-output) lists.

Example
Whiteboard.

Abstract Data Types 136/155

Stacks
Definition
‘A stack is a special kind of list in which all insertions and deletions take place at one end,
called the top.’ (p. 53).

Remark
Stacks are also named LIFO (last-input-first-output) lists.

Example
Whiteboard.

Abstract Data Types 137/155

Stacks
Operations on stacks

makeNull(S). Makes stack S be an empty stack.
top(S). Returns the element at the top of stack S.
pop(S). Deletes the top element of the stack.
push(x, S). Inserts the element x at the top of stack S.
empty(S). Returns true if S is an empty stack; return false otherwise.

Abstract Data Types 138/155

Stacks
Example
Program for processing a line by a text editor using a stack (Example 2.2).

Special characters:
The character ‘#’ is the erase character (back-space key) which cancel the previous
uncanceled character, e.g.,

abc#d##e is ae.

The character ‘@’ is the kill character which cancel all previous characters on the current
line.

(continued on next slide)

Abstract Data Types 139/155

Stacks
Example (continuation)
edit()
1 S : Stack
2 c : Char
3 makeNull(S)
4 while not eoln
5 read(c)
6 if c == ‘#’
7 pop(S)
8 elseif c == ‘@’
9 makeNull(S)

10 else
11 ▷ The character c is an ordinary character.
12 push(c, S)
13 print S in reverse order

Abstract Data Types 140/155

Queues
Definition
‘A queue is another special kind of list, where items are inserted at one end (the rear) and
deleted at the other end (the front).’ (p. 56)

Remark
Queues are also named FIFO (first-input-first-output) lists.

Example
Whiteboard.

Abstract Data Types 141/155

Queues
Definition
‘A queue is another special kind of list, where items are inserted at one end (the rear) and
deleted at the other end (the front).’ (p. 56)

Remark
Queues are also named FIFO (first-input-first-output) lists.

Example
Whiteboard.

Abstract Data Types 142/155

Queues
Definition
‘A queue is another special kind of list, where items are inserted at one end (the rear) and
deleted at the other end (the front).’ (p. 56)

Remark
Queues are also named FIFO (first-input-first-output) lists.

Example
Whiteboard.

Abstract Data Types 143/155

Queues
Operations on queues

makeNull(Q). Makes queue Q an empty list.
front(Q). Returns the first element on queue Q.
enqueue(x, Q). Inserts element x at the end of queue Q.
dequeue(Q). Deletes the first element of Q

empty(Q). Returns true iff Q is an empty queue.

Abstract Data Types 144/155

Queues
Queue operations on terms of list operations
We can use list operations for defining queue operations.

front(Q) := retrieve(first(Q), Q),
enqueue(x, Q) := insert(x, end(Q), Q),

dequeue(Q) := delete(first(Q), Q).

Abstract Data Types 145/155

Appendix

Floor and Ceiling Functions
Definition
The floor function is defined by

⌊·⌋ : R → Z
⌊x⌋ := that unique integer n such that n ≤ x < n + 1.

Definition
The ceiling function is defined by

⌈·⌉ : R → Z
⌈x⌉ := that unique integer n such that n − 1 < x ≤ n.

Appendix 147/155

Summation Properties
Definition
Let a1, a2, . . . , an be a sequence of numbers, where n is a positive integer. Recall the inductive
definition of the summation notation:

1∑
k=1

ak := a1,

n∑
k=1

ak :=
(

n−1∑
k=1

ak

)
+ an

= a1 + a2 + · · · + an−1 + an.

Appendix 148/155

Summation Properties
Properties

n∑
k=1

(ak + bk) =
n∑

k=1
ak +

n∑
k=1

bk (additive property),

n∑
k=1

cak = c
n∑

k=1
ak (homogeneous property),

n∑
k=1

(αak + βbk) = α
n∑

k=1
ak + β

n∑
k=1

bk (linearity property).

Appendix 149/155

Summation Properties
Properties

n∑
k=1

f(n) = nf(n),

n∑
k=1

ak =
i∑

k=1
ak +

n∑
k=i+1

ak.

Appendix 150/155

Summation Properties
Properties

n∑
k=1

k = n(n + 1)
2 ,

n∑
k=1

k2 = n(n + 1)(2n + 1)
6 ,

n∑
k=1

k3 =
(

n(n + 1)
2

)2
.

Appendix 151/155

References
Aho, A. V., Hopcroft, J. E. and Ullman, J. D. [1983] (1985). Data Structures and Algorithms.
Reprinted with corrections. Addison-Wesley (cit. on p. 3).
Bondy, J. A. and Murty, U. S. R. (2008). Graph Theory. Springer-Verlag (cit. on pp. 42–46).
Brassard, G. and Bratley, P. (1996). Fundamentals of Algorithmics. Prentice Hall (cit. on pp. 3,
31, 90).
Brueggemann, T. and Kern, W. (2004). An Improved Deterministic Local Search Algorithm for
3-SAT. Theoretical Computer Science 329.1–3, pp. 303–313. doi: 10.1016/j.tcs.2004.08.002
(cit. on p. 102).
Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. [1990] (2009). Introduction to Al-
gorithms. 3rd ed. MIT Press (cit. on pp. 25, 76, 82, 83, 87, 90).
Dantsin, E. et al. (2002). A Deterministic (2 − 2/(k + 1))n Algorithm for k-SAT Based on Local
Search. Theoretical Computer Science 289.1, pp. 69–83. doi: 10.1016/S0304-3975(01)00174-8
(cit. on p. 102).
Diestel, R. [1997] (2017). Graph Theory. 5th ed. Springer. doi: 10.1007/978-3-662-53622-3
(cit. on pp. 39–41).

https://doi.org/10.1016/j.tcs.2004.08.002
https://doi.org/10.1016/S0304-3975(01)00174-8
https://doi.org/10.1007/978-3-662-53622-3

References
Hertli, T. (2011). 3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General. In:
Proceedings of the 52nd Annual Symposium on Foundations of Computer Science (FOCS 2011).
IEEE, pp. 277–284. doi: 10.1109/FOCS.2011.22 (cit. on p. 102).
— (2015). Improved Exponential Algorithms for SAT and ClSP. PhD thesis. ETH Zurich. doi:
10.3929/ethz-a-010512781 (cit. on p. 102).
Karp, R. M. (1972). Reducibility Among Combinatorial Problems. In: Complexity of Computer
Computations. Ed. by Miller, R. E. and Thatcher, J. W. Plenum Press, pp. 85–103. doi: 10.1007/
978-1-4684-2001-2_9 (cit. on p. 101).
Knuth, D. E. (1976). Big Omicron and Big Omega and Big Theta. SIGACT News 8.2, pp. 18–24.
doi: 10.1145/1008328.1008329 (cit. on p. 90).
Kullmann, O. (1999). New Methods for 3-SAT Decision and Worst-Case Analysis. Theoretical
Computer Science 223.1–2, pp. 1–72. doi: 10.1016/S0304-3975(98)00017-6 (cit. on p. 102).
Kutzkov, K. and Scheder, D. (2010). Using CSP to Improve Deterministic 3-SAT. CoRR abs/1007.1166.
url: https://arxiv.org/abs/1007.1166 (cit. on p. 102).

https://doi.org/10.1109/FOCS.2011.22
https://doi.org/10.3929/ethz-a-010512781
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/1008328.1008329
https://doi.org/10.1016/S0304-3975(98)00017-6
https://arxiv.org/abs/1007.1166

References
Liu, S. (2018). Chain, Generalization of Covering Code, and Deterministic Algorithm for k-SAT.
In: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Ed.
by Chatzigiannakis, I., Kaklamanis, C., Marx, D. and Sannella, D. Vol. 107. Leibniz International
Proceedings in Informatics (LIPIcs), 88:1–88:13. doi: 10.4230/LIPIcs.ICALP.2018.88 (cit. on
p. 102).
Makino, K., Tamaki, S. and Yamamoto, M. (2011). Derandomizing HSSW Algorithm for 3-SAT. In:
Computing and Combinatorics (COCOON 2011). Ed. by Fu, B. and Du, D.-Z. Vol. 6842. Lecture
Notes in Computer Science. Springer, pp. 1–12. doi: 10.1007/978-3-642-22685-4_1 (cit. on
p. 102).
— (2013). Derandomizing HSSW Algorithm for 3-SAT. Algorithmica 67.2, pp. 112–124. doi:
10.1007/s00453-012-9741-4 (cit. on p. 102).
Monien, B. and Speckenmeyer, E. (1979). 3-Satisfiability is Testable in O(1.62r) Steps. Tech. rep.
3/1979. Reihe Theoretische Informatik, Universität Gesamthochschule Paderborn (cit. on p. 102).
— (1985). Solving Satisfiability in less than 2n Steps. Discrete Applied Mathematics 10.3,
pp. 287–295. doi: 10.1016/0166-218X(85)90050-2 (cit. on p. 102).

https://doi.org/10.4230/LIPIcs.ICALP.2018.88
https://doi.org/10.1007/978-3-642-22685-4_1
https://doi.org/10.1007/s00453-012-9741-4
https://doi.org/10.1016/0166-218X(85)90050-2

References
Moser, R. A. and Scheder, D. (2011). A Full Derandomization of Schöning’s k-SAT Algorithm. In:
Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing (STOC 2011),
pp. 245–252. doi: 10.1145/1993636.1993670 (cit. on p. 102).
Parberry, I. and Gasarch, W. [1994] (2002). Problems on Algorithms. 2nd ed. Prentice Hall (cit. on
pp. 3, 30).
Scheder, D. (2008). Guided Search and a Faster Deterministic Algorithm for 3-SAT. In: Proc. of
the 8th Latin American Symposium on Theoretical Informatic (LATIN 2008). Ed. by Laber, E. S.,
Bornstein, C., Nogueira, T. L. and Faria, L. Vol. 4957. Lecture Notes in Computer Science. Springer,
pp. 60–71. doi: 10.1007/978-3-540-78773-0_6 (cit. on p. 102).
Schiermeyer, I. (1996). Pure Literal Look Ahead: An O(1.497n) 3-Satisfability Algorithm (Extended
Abstract). Workshop on the Satisfability Problem, Siena 1996. url: http://gauss.ececs.uc.
edu/franco_files/SAT96/sat-workshop-abstracts.html (cit. on p. 102).

https://doi.org/10.1145/1993636.1993670
https://doi.org/10.1007/978-3-540-78773-0_6
http://gauss.ececs.uc.edu/franco_files/SAT96/sat-workshop-abstracts.html
http://gauss.ececs.uc.edu/franco_files/SAT96/sat-workshop-abstracts.html

	Introduction
	Administrative Information
	Course Content
	Preliminaries

	Elementary Algorithms
	From Problems to Programs
	Programming Languages
	Pseudo-Code
	Sorting
	Problem: Setting Traffic Light Cycles

	Analysis of Algorithms
	The Running Time of a Program
	Asymptotic Notations
	The Tyranny of Growth Rate
	Calculating the Running Time of a Program

	Abstract Data Types
	Introduction
	Lists
	Stacks
	Queues

	Appendix
	Floor and Ceiling Functions
	Summation Properties

	References

