
Ordinals and Typed Lambda Calculus
Typed Lambda Calculus

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2018-2

(Last modification: 7th May 2025)



Introduction
General picture
The term ‘typed λ-calculus’ denotes a family of formal systems. Every typed λ-calculus is a
formal theory compound of formulae, axioms and rules of inference.∗

A typed λ-calculus

Types Lambda terms
type assignment

∗See, e.g. [Bar1992] and [HS2008].
Typed Lambda Calculus 2/21



Introduction
Example (Types)

Mathematics
f : Z → {True, False}
f(x) = ...

Haskell
f :: Bool → Int
f b = ...

map :: (a → b) → [a] → [b]
map f as = ...

Typed Lambda Calculus 3/21



Introduction
Example (Types)

σ, τ ::= x (type variables)
| c (constant types)
| ⊥ (the empty type)
| ⊤ (the unit type)
| σ → τ (function types)
| σ × τ (product types)
| σ + τ (disjoint union types)

Typed Lambda Calculus 4/21



What is a Type?

A type is a set.

Types as ranges of significance of propositional functions. Let φ(x) be a (unary)
propositional function. The type of φ(x) is the range within which x must lie if φ(x) is to
be a proposition [Rus1938, Appendix B: The Doctrine of Types].

In modern terminology, Rusell’s types are domains of propositional functions.

Example
Let φ(x) be the propositional function ‘x is a prime number’. Then φ(x) is a proposition
only when its argument is a natural number.

φ : N → {False, True}
φ(x) = x is a prime number.

Typed Lambda Calculus 5/21



What is a Type?

A type is a set.
Types as ranges of significance of propositional functions. Let φ(x) be a (unary)
propositional function. The type of φ(x) is the range within which x must lie if φ(x) is to
be a proposition [Rus1938, Appendix B: The Doctrine of Types].

In modern terminology, Rusell’s types are domains of propositional functions.

Example
Let φ(x) be the propositional function ‘x is a prime number’. Then φ(x) is a proposition
only when its argument is a natural number.

φ : N → {False, True}
φ(x) = x is a prime number.

Typed Lambda Calculus 6/21



What is a Type?

A type is a set.
Types as ranges of significance of propositional functions. Let φ(x) be a (unary)
propositional function. The type of φ(x) is the range within which x must lie if φ(x) is to
be a proposition [Rus1938, Appendix B: The Doctrine of Types].

In modern terminology, Rusell’s types are domains of propositional functions.

Example
Let φ(x) be the propositional function ‘x is a prime number’. Then φ(x) is a proposition
only when its argument is a natural number.

φ : N → {False, True}
φ(x) = x is a prime number.

Typed Lambda Calculus 7/21



What is a Type?

Hoare’s ‘Notes on Data Structuring’ [Hoa1972, pp. 92-93]:

Thus there is a high degree of commonality in the use of the concept of type by
mathematicians, logicians and programmers. The salient characteristics of the concept
of type may be summarised:

1. A type determines the class of values which may be assumed by a variable or
expression.

2. Every value belongs to one and only one type.

3. The type of a value denoted by any constant, variable, or expression may be
deduced from its form or context, without any knowledge of its value as computed
at run time.

(continued on next slide)

Typed Lambda Calculus 8/21



What is a Type?

Hoare’s ‘Notes on Data Structuring’ [Hoa1972, pp. 92-93]:

Thus there is a high degree of commonality in the use of the concept of type by
mathematicians, logicians and programmers. The salient characteristics of the concept
of type may be summarised:

1. A type determines the class of values which may be assumed by a variable or
expression.

2. Every value belongs to one and only one type.

3. The type of a value denoted by any constant, variable, or expression may be
deduced from its form or context, without any knowledge of its value as computed
at run time.

(continued on next slide)

Typed Lambda Calculus 9/21



What is a Type?

Hoare’s ‘Notes on Data Structuring’ (continuation)

4. Each operator expects operands of some fixed type, and delivers a result of some
fixed type (usually the same). Where the same symbol is applied to several
different types (e.g. + for addition of integers as well as reals), this symbol
may be regarded as ambiguous, denoting several different actual operators. The
resolution of such systematic ambiguity can always be made at compile time.

5. The properties of the values of a type and of the primitive operations defined over
them are specified by means of a set of axioms.

(continued on next slide)

Typed Lambda Calculus 10/21



What is a Type?

Hoare’s ‘Notes on Data Structuring’ (continuation)

6. Type information is used in a high-level language both to prevent or detect mean-
ingless constructions in a program, and to determine the method of representing
and manipulating data on a computer.

7. The types in which we are interested are those already familiar to mathematicians;
namely, Cartesian Products, Discriminated Unions, Sets, Functions, Sequences,
and Recursive Structures.

Typed Lambda Calculus 11/21



What is a Type?

‘A type system is a tractable syntactic method for proving the absence of certain program
behaviours by classifying phrases according to the kinds of values they compute.’ [Pie2002,
p. 1]

‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ [KS2008, p. 8]

Related readings
‘The Triumph of Types: Principia Mathematica’s Impact on Computer Science’
[Con2010].
‘Against a Universal Definition of ‘Type” [Pet2015].

Typed Lambda Calculus 12/21



What is a Type?

‘A type system is a tractable syntactic method for proving the absence of certain program
behaviours by classifying phrases according to the kinds of values they compute.’ [Pie2002,
p. 1]
‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ [KS2008, p. 8]

Related readings
‘The Triumph of Types: Principia Mathematica’s Impact on Computer Science’
[Con2010].
‘Against a Universal Definition of ‘Type” [Pet2015].

Typed Lambda Calculus 13/21



What is a Type?

‘A type system is a tractable syntactic method for proving the absence of certain program
behaviours by classifying phrases according to the kinds of values they compute.’ [Pie2002,
p. 1]
‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ [KS2008, p. 8]

Related readings
‘The Triumph of Types: Principia Mathematica’s Impact on Computer Science’
[Con2010].
‘Against a Universal Definition of ‘Type” [Pet2015].

Typed Lambda Calculus 14/21



What is a Type?

BHK (Brouwer, Heyting, Kolmogorov) interpretation: A type is a set, a proposition, a
problem and a specification.∗

Type A Term a : A Interpretation
A is a set a is an element of the set A A ̸= ∅

A is a proposition a is a proof (construction) of the proposition A A is true

A is a problem a is a method of solving the problem A A is solvable

A is a specification a is a program than meets the specification A A is satisfiable

∗See, e.g. [Mar1984].
Typed Lambda Calculus 15/21



Applications of Typed Lambda Calculus

To carry useful information for programs optimisation.

To reduce the semantic gap between programs and their properties.
The propositions-as-types-principle: Computational interpretation of logical constants.
Unified programing logics (programs, specification and satisfaction relation).

Typed Lambda Calculus 16/21



Applications of Typed Lambda Calculus

To carry useful information for programs optimisation.
To reduce the semantic gap between programs and their properties.

The propositions-as-types-principle: Computational interpretation of logical constants.
Unified programing logics (programs, specification and satisfaction relation).

Typed Lambda Calculus 17/21



Applications of Typed Lambda Calculus

To carry useful information for programs optimisation.
To reduce the semantic gap between programs and their properties.
The propositions-as-types-principle: Computational interpretation of logical constants.

Unified programing logics (programs, specification and satisfaction relation).

Typed Lambda Calculus 18/21



Applications of Typed Lambda Calculus

To carry useful information for programs optimisation.
To reduce the semantic gap between programs and their properties.
The propositions-as-types-principle: Computational interpretation of logical constants.
Unified programing logics (programs, specification and satisfaction relation).

Typed Lambda Calculus 19/21



References
[Bar1992] Henk Barendregt. Lambda Calculi with Types. In: Handbook of Logic in Computer Science.

Volume 2. Ed. by S. Abramsky, Dov M. Gabbay and T. S. E. Maibaum. Clarendon Press,
1992, pp. 117–309 (cit. on p. 2).

[Con2010] Robert L. Constable. The Triumph of Types: Principia Mathematica’s Impact on Computer
Science. Presented at the Principia Mathematica anniversary symposium. 2010 (cit. on
pp. 12–14).

[HS2008] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators. An Introduc-
tion. Cambridge University Press, 2008 (cit. on p. 2).

[Hoa1972] C. A. R. Hoare. Notes on Data Structuring. In: Structured Programming. Ed. by O.-J. Dahl,
E. W. Disjkstra and C. A. R. Hoare. Academic Press, 1972, pp. 83–174 (cit. on pp. 8, 9).

[KS2008] Oleg Kiselyov and Chung-chieh Shan. Interpreting Types as Abstract Values. Formosan
Summer School on Logic, Language and Computacion (FLOLAC 2008). 2008 (cit. on
pp. 12–14).

[Mar1984] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984 (cit. on p. 15).

Typed Lambda Calculus 20/21



References
[Pet2015] Tomas Petricek. Against a Universal Definition of ‘Type’. In: Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software (Onward! 2015). ACM,
2015, pp. 254–266. doi: 10.1145/2814228.2814249 (cit. on pp. 12–14).

[Pie2002] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002 (cit. on pp. 12–
14).

[Rus1938] Bertrand Russell. The Principles of Mathematics. 2nd ed. W. W. Norton & Company, Inc,
1938 (1903) (cit. on pp. 5–7).

Typed Lambda Calculus 21/21

https://doi.org/10.1145/2814228.2814249

	Typed Lambda Calculus
	Introduction
	What is a Type?
	Applications of Typed Lambda Calculus
	References


