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Introduction

Alonzo Church (1903 – 1995)∗

∗Figures sources: History of computers, Wikipedia and MacTutor History of Mathematics.
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Simply Typed Lambda Calculus
Convention
The simply typed λ-calculus will be denoted by λ→.

Definition
Let V a denumerable set of variables. The set of λ-terms, denoted by Λ, is inductively defined by

x ∈ V ⇒ x ∈ Λ (variable)
M, N ∈ Λ ⇒ (M N) ∈ Λ (application)

M ∈ Λ, x ∈ V ⇒ (λx.M) ∈ Λ (λ-abstraction)
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Types
Definition
Let B a set of base types (i.e. constant types). The set of types of λ→, denoted by T, is
inductively defined by

b ∈ B ⇒ b ∈ T (constant types)
σ, τ ∈ T ⇒ (σ → τ) ∈ T (function types)

Remark
Usually, the set of types is defined by the abstract grammar

τ ::= b ∈ B

| τ → τ
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Types
Convention
Arbitrary types will be denoted by σ and τ , with or without number-subscripts.

Example
The simple theory of types of Church [Chu1940] only included two base types:

ι: the type of individuals and
o: the type of propositions.
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Type-Assignments
Definition
A formula or type-assignment in λ→ is of the form

M : σ,

which means that λ-term M has type σ.
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Type-Assignments
Example
The simple theory of types of Church [Chu1940] included the following type-assignments:

N : o → o (negation)
A : o → o → o (disjunction)
Π : (σ → o) → o (universal quantifier)

0σ′ : σ′ → σ′ (zero)
Sσ′ : (σ′ → σ′) → σ′ → σ′ (successor)

where σ′ denotes (σ → σ) → (σ → σ).
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Type-Contexts
Definition
A type-context (or basis) Γ is a finite set of type-assignments

Γ = { x1 : σ1, . . . , xn : σn }

in which there is no a term-variable with more than one assignment.

Remark
Note that a type-context only includes typed term-variables.
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Typing Relation
Definition
The typing relation Γ ⊢ M : σ means that λ-term M has type σ in the context Γ.
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Typing Rules
Rules of type-assignment
The typing rules for λ→ (relative to a context Γ) are given by∗

Γ, x : σ ⊢ x : σ (axiom)

Γ ⊢ M : (σ → τ) Γ ⊢ N : σ

Γ ⊢ (M N) : τ
(→-elimination)

Γ, x : σ ⊢ M : τ

Γ ⊢ (λx.M) : (σ → τ)
(→-introduction)

∗See, e.g. [Bar1992; Hin2008].
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Typing Rules
Example
To prove that λx.x has type σ → σ, for all σ ∈ T.

Proof

x : σ ⊢ x : σ
→I

⊢ λx.x : σ → σ
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Typing Rules
Example
To prove that λ x y. x has type σ → (τ → σ), for all σ, τ , ∈ T.

Proof

x : σ, y : τ ⊢ x : σ
→I

x : σ ⊢ λy.x : τ → σ
→I

⊢ λ x y. x : σ → (τ → σ)
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Typing Rules
Example
The composition operator λ f g x. f (g x) has type (σ2 → σ3) → (σ1 → σ2) → σ1 → σ3, for all
σ1, σ2, σ3 ∈ T.

Proof
Let Γ = { f : σ2 → σ3, g : σ1 → σ2, x : σ1 }. Then

Γ ⊢ f : σ2 → σ3

Γ ⊢ g : σ1 → σ2 Γ ⊢ x : σ1
→E

Γ ⊢ g x : σ2
→E

Γ ⊢ f (g x) : σ3
→I

f : σ2 → σ3, g : σ1 → σ2 ⊢ λ x. f (g x) : σ1 → σ3
→I

f : σ2 → σ3 ⊢ λ g x. f (g x) : (σ1 → σ2) → (σ1 → σ3)
→I

⊢ λ f g x. f( g x) : (σ2 → σ3) → (σ1 → σ2) → (σ1 → σ3)
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Typing Rules
Example
Let Γ = {y : σ} be a basis. To prove that Γ ⊢ (λx.x) y : σ.

Proof

Γ, x : σ ⊢ x : σ
→I

Γ ⊢ λx.x : σ → σ Γ ⊢ y : σ
→E

Γ ⊢ (λx.x) y : σ
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Typing Rules
Example
The self-application xx has no a type assigned in λ→.

Example
The fixed-point combinator Y := λ f. (λx . f (x x)) (λ x. f (x x)) does not have a type in λ→.∗

Example
The λ-term Ω := (λ x. x x) (λ x. x x) does not have a type in λ→ (because it has no a β-normal
form).

∗See, e.g. [BDS2013, Proposition 2.4.24].
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Definable Number-Theoretic Functions
Remark
Recall that a number-theoretic function is a function whose signature is

Nk → N, with k ∈ N.
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Definable Number-Theoretic Functions
Example
The following functions are number-theoretic functions:

z(x) = 0 (zero function)
s(x) = x + 1 (successor function)

pn
k(x1, . . . , xn) = xk (n-ary projection functions)

kn(x) = n (n-constant functions)

discr(x, y, z) =
{

y, if x ̸= 0
z, if x = 0

(discriminator function)
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Definable Number-Theoretic Functions
Definition
Let’s work with the λ→ with only one base type, denoted type o. The type of natural numbers
is defined by

Nat := (o → o) → (o → o).
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Definable Number-Theoretic Functions
Example
The λ-term c0 := λ f x. x has type Nat.

f : o → o, x : o ⊢ x : o
→I

f : o → o ⊢ λx.x : o → o
→I

⊢ λ f x. x : (o → o) → o → o
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Definable Number-Theoretic Functions
Example
The λ-term succ := λ n f x. f (n f x) has type Nat → Nat.

Let Γ = { n : Nat, f : o → o, x : o }. Then

Γ ⊢ f : o → o

Γ ⊢ n : Nat Γ ⊢ f : o → o
→E

Γ ⊢ n f : o → o Γ ⊢ x : o
→E

Γ ⊢ n f x : o
→E

Γ ⊢ f (n f x) : o
→I

n : Nat, f : o → o ⊢ λ x. f (n f x) : o → o
→I

n : Nat ⊢ λ f x. f (n f x) : Nat
→I

⊢ λ n f x. f (n f x) : Nat → Nat
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Definable Number-Theoretic Functions
Example

cn+1 : Nat := succ cn ,

add : Nat → Nat → Nat := λ m n f x. m f (n f x),
mult : Nat → Nat → Nat := λ m n f. m (n f).
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Definable Number-Theoretic Functions
Definition
Let φ : Nk → N be a number-theoretic function. The function φ is definable respect to Nat
in the λ→ iff there exists a λ-term F : Natn → Nat such that for all n1, . . . , nk ∈ N,

φ(n1, . . . , nk) = a ⇒ F cn1 . . . cnk =β ca.
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Definable Number-Theoretic Functions
Definition
The class of the so-called extended polynomials is the smallest class of number-theoretic
functions including the constant functions k0 and k1, the projection functions, addition, multi-
plication, the discrimination function and closed under composition.∗

∗See, e.g. [Sta1979; Dan1999]. A different but equivalent definition is given in [TS2000].
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Definable Number-Theoretic Functions
Theorem
If φ is an extended polynomial, then φ is definable (respect to the type Nat) in the λ→.

Theorem
If a number-theoretic function φ is definable (respect to the type Nat) in the λ→, then the
function φ is an extended polynomial.∗

∗The theorem was proved by Schwichtenberg [Sch1976] and stated by Statman [Sta1979] as pointed out by
Danner [Dan1999].
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Definable Number-Theoretic Functions
Remark
A function

pred : Nat → Nat
pred cn+1 =β cn .

cannot be defined in the λ→.∗

∗See, e.g. [BDS2013, Proposition 2.4.22].
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Definable Number-Theoretic Functions
Remark
Let P := (o → o) → (o → o) → o. The type of the predecessor function defined in the untyped
λ-calculus is

pred : (P → P ) → o → o → o

pred := λ n f x. n (λ g h. h (g f)) (λu.x) (λu.u).

Remark
There are not functions defined by (primitive) recursion in the λ→.
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Definable Number-Theoretic Functions
Remark
Troelstra and Schwichtenberg [TS2000, p. 21–22] point out that

However, if we permit ourselves the use of Church numerals of different types, and in
particular liberalize the notion of representation of a function by permitting numerals
of different types for the input and the output, we can represent more than extended
polynomials.
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Definable Number-Theoretic Functions
Example
Let NatA be the type of natural numbers of type A

NatA := (A → A) → (A → A).

and let nA be a numeral of type NatA. We can define exponentiation by

exp : NatA → NatA→A → NatA := λ m n f x. (n m) f x,

where
exp mA nA→A =β mn

A (n > 0).
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Definable Ordinals
Abstractions on the representation of natural numbers

No abstraction

We can define two constants

Z : o,

S : o → o,

so natural numbers are represented by terms of the form

S(. . . (S Z) . . . ).

Using this representation the definable number-theoretic functions are those definable by
iterating successor (e.g. projection and constant functions) [Dan1999].

(continued on next slide)
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Definable Ordinals
Abstractions on the representation of natural numbers (continuation)

Abstraction on zero

By abstracting on zero, natural numbers are represented by terms of the form

λ z. S (. . . (S z) . . . ).

Using this representation the definable number-theoretic functions are those definable by
iterating successor and addition [Dan1999].

(continued on next slide)
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Definable Ordinals
Abstractions on the representation of natural numbers (continuation)

Abstraction on zero and successor

By abstracting on zero and successor, natural numbers are represented by the Church
numerals

λ s z. s (. . . (s z) . . . ).

And we know which are the definable number-theoretic functions using this representation
(i.e. the extended polynomials).
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Definable Ordinals
Representations of ordinals below ωω

From the possibles abstractions for representing natural numbers, Danner [Dan1999] defines four
representations (called canonical, additive, arithmetic and intensional) for ordinals below ωω.
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Definable Ordinals
Notation
For n ∈ N, we define

M0 N := N,

Mn+1 N := M (Mn N).

Definable Ordinals in the Simply Typed Lambda Calculus 41/53



Definable Ordinals
An ω-fold iterator (informally)
We introduced a constant L which ‘represents’ an ω-fold iterator.

Example
The λ-term L S represents the function · + w (the limit of iterating successor).

The λ-term L2 S represents the function · + w2 (the limit of iterating · + w).

The λ-term Ln S represents the function · + wn.

The λ-term S (S (L S (L2 S Z))) represents the ordinal ω2 + w + 2.
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Definable Ordinals
Definition
The type of ordinal numbers is defined by

ON := (o → o) → o → o.
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Definable Ordinals
Canonical representations
Let L be of type ON and let α be an ordinal below ωω

α = ωnr + · · · + ωn0 ,

where nr ≥ nr−1 ≥ · · · ≥ n0 and ni ∈ N.

The canonical representation for α, denoted by ᾱ, is defined by

α∗ := (Ln0 s) ((Ln1 s) (. . . ((Lnr s) z) . . . )),
ᾱ := λs.λz.α∗,

where s : ON → ON and z : ON.
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Definable Ordinal Functions
Definition
An ordinal function φ(α1, . . . , αn) is canonically, additively, arithmetically or intensionally
definable respect to ON in the λ→ iff there exits a closed λ-term F : ONn → ON such that

φ(α1, . . . , αn) = β ⇒ FA1 . . . An βη-reduces to B,

where A1, . . . , An and B are the canonical, additive, arithmetic or intensional representations
for α1, . . . , αn and β, respectively [Dan1999, p. 191].
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Definable Ordinal Functions
Notation
Let A be a set of ordinal functions. The smallest class of ordinal functions below ωω including
the constant functions, the projection functions, the set A and closed under composition is
denoted by [A].
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Definable Ordinal Functions

Theorem (Danner [Dan1999], Theorem 4.11)
The ordinal functions canonically definable are exactly the functions

[ α 7→ α + 1, α 7→ ωα ].

Theorem (Danner [Dan1999], Theorem 4.15)
The ordinal functions additively definable are exactly the functions

[ +, α 7→ ωα ].

Theorem (Danner [Dan1999], Theorem 4.21)
The ordinal functions arithmetically definable are exactly the functions

[ +, × ].
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Definable Ordinal Functions
Definition
The weak discriminator function on ordinals is the function defined by [Dan1999, p. 198]

wdiscr(α, β, δ) :=
{

β, if α > 0;
δ, if a = 0.

Theorem (Danner [Dan1999], Theorem 4.24)
The ordinal functions intensionally definable are exactly the functions

[ +, ×, wdiscr ].
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