
Ordinals and Typed Lambda Calculus
Definable Ordinals in the Simply Typed Lambda Calculus

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2018-2

(Last modification: 7th May 2025)

Introduction

Alonzo Church (1903 – 1995)∗

∗Figures sources: History of computers, Wikipedia and MacTutor History of Mathematics.
Definable Ordinals in the Simply Typed Lambda Calculus 2/53

https://history-computer.com/ModernComputer/thinkers/Church.html
https://en.wikipedia.org/wiki/Alonzo_Church
http://www-history.mcs.st-and.ac.uk/Biographies/Church.html

Introduction

Definable Ordinals in the Simply Typed Lambda Calculus 3/53

Simply Typed Lambda Calculus
Convention
The simply typed λ-calculus will be denoted by λ→.

Definition
Let V a denumerable set of variables. The set of λ-terms, denoted by Λ, is inductively defined by

x ∈ V ⇒ x ∈ Λ (variable)
M, N ∈ Λ ⇒ (M N) ∈ Λ (application)

M ∈ Λ, x ∈ V ⇒ (λx.M) ∈ Λ (λ-abstraction)

Definable Ordinals in the Simply Typed Lambda Calculus 4/53

Simply Typed Lambda Calculus
Convention
The simply typed λ-calculus will be denoted by λ→.

Definition
Let V a denumerable set of variables. The set of λ-terms, denoted by Λ, is inductively defined by

x ∈ V ⇒ x ∈ Λ (variable)
M, N ∈ Λ ⇒ (M N) ∈ Λ (application)

M ∈ Λ, x ∈ V ⇒ (λx.M) ∈ Λ (λ-abstraction)

Definable Ordinals in the Simply Typed Lambda Calculus 5/53

Types
Definition
Let B a set of base types (i.e. constant types). The set of types of λ→, denoted by T, is
inductively defined by

b ∈ B ⇒ b ∈ T (constant types)
σ, τ ∈ T ⇒ (σ → τ) ∈ T (function types)

Remark
Usually, the set of types is defined by the abstract grammar

τ ::= b ∈ B

| τ → τ

Definable Ordinals in the Simply Typed Lambda Calculus 6/53

Types
Convention
Arbitrary types will be denoted by σ and τ , with or without number-subscripts.

Example
The simple theory of types of Church [Chu1940] only included two base types:

ι: the type of individuals and
o: the type of propositions.

Definable Ordinals in the Simply Typed Lambda Calculus 7/53

Types
Convention
Arbitrary types will be denoted by σ and τ , with or without number-subscripts.

Example
The simple theory of types of Church [Chu1940] only included two base types:

ι: the type of individuals and
o: the type of propositions.

Definable Ordinals in the Simply Typed Lambda Calculus 8/53

Type-Assignments
Definition
A formula or type-assignment in λ→ is of the form

M : σ,

which means that λ-term M has type σ.

Definable Ordinals in the Simply Typed Lambda Calculus 9/53

Type-Assignments
Example
The simple theory of types of Church [Chu1940] included the following type-assignments:

N : o → o (negation)
A : o → o → o (disjunction)
Π : (σ → o) → o (universal quantifier)

0σ′ : σ′ → σ′ (zero)
Sσ′ : (σ′ → σ′) → σ′ → σ′ (successor)

where σ′ denotes (σ → σ) → (σ → σ).

Definable Ordinals in the Simply Typed Lambda Calculus 10/53

Type-Contexts
Definition
A type-context (or basis) Γ is a finite set of type-assignments

Γ = { x1 : σ1, . . . , xn : σn }

in which there is no a term-variable with more than one assignment.

Remark
Note that a type-context only includes typed term-variables.

Definable Ordinals in the Simply Typed Lambda Calculus 11/53

Typing Relation
Definition
The typing relation Γ ⊢ M : σ means that λ-term M has type σ in the context Γ.

Definable Ordinals in the Simply Typed Lambda Calculus 12/53

Typing Rules
Rules of type-assignment
The typing rules for λ→ (relative to a context Γ) are given by∗

Γ, x : σ ⊢ x : σ (axiom)

Γ ⊢ M : (σ → τ) Γ ⊢ N : σ

Γ ⊢ (M N) : τ
(→-elimination)

Γ, x : σ ⊢ M : τ

Γ ⊢ (λx.M) : (σ → τ)
(→-introduction)

∗See, e.g. [Bar1992; Hin2008].
Definable Ordinals in the Simply Typed Lambda Calculus 13/53

Typing Rules
Example
To prove that λx.x has type σ → σ, for all σ ∈ T.

Proof

x : σ ⊢ x : σ
→I

⊢ λx.x : σ → σ

Definable Ordinals in the Simply Typed Lambda Calculus 14/53

Typing Rules
Example
To prove that λx.x has type σ → σ, for all σ ∈ T.

Proof

x : σ ⊢ x : σ
→I

⊢ λx.x : σ → σ

Definable Ordinals in the Simply Typed Lambda Calculus 15/53

Typing Rules
Example
To prove that λ x y. x has type σ → (τ → σ), for all σ, τ , ∈ T.

Proof

x : σ, y : τ ⊢ x : σ
→I

x : σ ⊢ λy.x : τ → σ
→I

⊢ λ x y. x : σ → (τ → σ)

Definable Ordinals in the Simply Typed Lambda Calculus 16/53

Typing Rules
Example
The composition operator λ f g x. f (g x) has type (σ2 → σ3) → (σ1 → σ2) → σ1 → σ3, for all
σ1, σ2, σ3 ∈ T.

Proof
Let Γ = { f : σ2 → σ3, g : σ1 → σ2, x : σ1 }. Then

Γ ⊢ f : σ2 → σ3

Γ ⊢ g : σ1 → σ2 Γ ⊢ x : σ1
→E

Γ ⊢ g x : σ2
→E

Γ ⊢ f (g x) : σ3
→I

f : σ2 → σ3, g : σ1 → σ2 ⊢ λ x. f (g x) : σ1 → σ3
→I

f : σ2 → σ3 ⊢ λ g x. f (g x) : (σ1 → σ2) → (σ1 → σ3)
→I

⊢ λ f g x. f(g x) : (σ2 → σ3) → (σ1 → σ2) → (σ1 → σ3)

Definable Ordinals in the Simply Typed Lambda Calculus 17/53

Typing Rules
Example
Let Γ = {y : σ} be a basis. To prove that Γ ⊢ (λx.x) y : σ.

Proof

Γ, x : σ ⊢ x : σ
→I

Γ ⊢ λx.x : σ → σ Γ ⊢ y : σ
→E

Γ ⊢ (λx.x) y : σ

Definable Ordinals in the Simply Typed Lambda Calculus 18/53

Typing Rules
Example
The self-application xx has no a type assigned in λ→.

Example
The fixed-point combinator Y := λ f. (λx . f (x x)) (λ x. f (x x)) does not have a type in λ→.∗

Example
The λ-term Ω := (λ x. x x) (λ x. x x) does not have a type in λ→ (because it has no a β-normal
form).

∗See, e.g. [BDS2013, Proposition 2.4.24].
Definable Ordinals in the Simply Typed Lambda Calculus 19/53

Typing Rules
Example
The self-application xx has no a type assigned in λ→.

Example
The fixed-point combinator Y := λ f. (λx . f (x x)) (λ x. f (x x)) does not have a type in λ→.∗

Example
The λ-term Ω := (λ x. x x) (λ x. x x) does not have a type in λ→ (because it has no a β-normal
form).

∗See, e.g. [BDS2013, Proposition 2.4.24].
Definable Ordinals in the Simply Typed Lambda Calculus 20/53

Typing Rules
Example
The self-application xx has no a type assigned in λ→.

Example
The fixed-point combinator Y := λ f. (λx . f (x x)) (λ x. f (x x)) does not have a type in λ→.∗

Example
The λ-term Ω := (λ x. x x) (λ x. x x) does not have a type in λ→ (because it has no a β-normal
form).

∗See, e.g. [BDS2013, Proposition 2.4.24].
Definable Ordinals in the Simply Typed Lambda Calculus 21/53

Definable Number-Theoretic Functions
Remark
Recall that a number-theoretic function is a function whose signature is

Nk → N, with k ∈ N.

Definable Ordinals in the Simply Typed Lambda Calculus 22/53

Definable Number-Theoretic Functions
Example
The following functions are number-theoretic functions:

z(x) = 0 (zero function)
s(x) = x + 1 (successor function)

pn
k(x1, . . . , xn) = xk (n-ary projection functions)

kn(x) = n (n-constant functions)

discr(x, y, z) =
{

y, if x ̸= 0
z, if x = 0

(discriminator function)

Definable Ordinals in the Simply Typed Lambda Calculus 23/53

Definable Number-Theoretic Functions
Definition
Let’s work with the λ→ with only one base type, denoted type o. The type of natural numbers
is defined by

Nat := (o → o) → (o → o).

Definable Ordinals in the Simply Typed Lambda Calculus 24/53

Definable Number-Theoretic Functions
Example
The λ-term c0 := λ f x. x has type Nat.

f : o → o, x : o ⊢ x : o
→I

f : o → o ⊢ λx.x : o → o
→I

⊢ λ f x. x : (o → o) → o → o

Definable Ordinals in the Simply Typed Lambda Calculus 25/53

Definable Number-Theoretic Functions
Example
The λ-term succ := λ n f x. f (n f x) has type Nat → Nat.

Let Γ = { n : Nat, f : o → o, x : o }. Then

Γ ⊢ f : o → o

Γ ⊢ n : Nat Γ ⊢ f : o → o
→E

Γ ⊢ n f : o → o Γ ⊢ x : o
→E

Γ ⊢ n f x : o
→E

Γ ⊢ f (n f x) : o
→I

n : Nat, f : o → o ⊢ λ x. f (n f x) : o → o
→I

n : Nat ⊢ λ f x. f (n f x) : Nat
→I

⊢ λ n f x. f (n f x) : Nat → Nat

Definable Ordinals in the Simply Typed Lambda Calculus 26/53

Definable Number-Theoretic Functions
Example

cn+1 : Nat := succ cn ,

add : Nat → Nat → Nat := λ m n f x. m f (n f x),
mult : Nat → Nat → Nat := λ m n f. m (n f).

Definable Ordinals in the Simply Typed Lambda Calculus 27/53

Definable Number-Theoretic Functions
Definition
Let φ : Nk → N be a number-theoretic function. The function φ is definable respect to Nat
in the λ→ iff there exists a λ-term F : Natn → Nat such that for all n1, . . . , nk ∈ N,

φ(n1, . . . , nk) = a ⇒ F cn1 . . . cnk =β ca.

Definable Ordinals in the Simply Typed Lambda Calculus 28/53

Definable Number-Theoretic Functions
Definition
The class of the so-called extended polynomials is the smallest class of number-theoretic
functions including the constant functions k0 and k1, the projection functions, addition, multi-
plication, the discrimination function and closed under composition.∗

∗See, e.g. [Sta1979; Dan1999]. A different but equivalent definition is given in [TS2000].
Definable Ordinals in the Simply Typed Lambda Calculus 29/53

Definable Number-Theoretic Functions
Theorem
If φ is an extended polynomial, then φ is definable (respect to the type Nat) in the λ→.

Theorem
If a number-theoretic function φ is definable (respect to the type Nat) in the λ→, then the
function φ is an extended polynomial.∗

∗The theorem was proved by Schwichtenberg [Sch1976] and stated by Statman [Sta1979] as pointed out by
Danner [Dan1999].

Definable Ordinals in the Simply Typed Lambda Calculus 30/53

Definable Number-Theoretic Functions
Theorem
If φ is an extended polynomial, then φ is definable (respect to the type Nat) in the λ→.

Theorem
If a number-theoretic function φ is definable (respect to the type Nat) in the λ→, then the
function φ is an extended polynomial.∗

∗The theorem was proved by Schwichtenberg [Sch1976] and stated by Statman [Sta1979] as pointed out by
Danner [Dan1999].

Definable Ordinals in the Simply Typed Lambda Calculus 31/53

Definable Number-Theoretic Functions
Remark
A function

pred : Nat → Nat
pred cn+1 =β cn .

cannot be defined in the λ→.∗

∗See, e.g. [BDS2013, Proposition 2.4.22].
Definable Ordinals in the Simply Typed Lambda Calculus 32/53

Definable Number-Theoretic Functions
Remark
Let P := (o → o) → (o → o) → o. The type of the predecessor function defined in the untyped
λ-calculus is

pred : (P → P) → o → o → o

pred := λ n f x. n (λ g h. h (g f)) (λu.x) (λu.u).

Remark
There are not functions defined by (primitive) recursion in the λ→.

Definable Ordinals in the Simply Typed Lambda Calculus 33/53

Definable Number-Theoretic Functions
Remark
Let P := (o → o) → (o → o) → o. The type of the predecessor function defined in the untyped
λ-calculus is

pred : (P → P) → o → o → o

pred := λ n f x. n (λ g h. h (g f)) (λu.x) (λu.u).

Remark
There are not functions defined by (primitive) recursion in the λ→.

Definable Ordinals in the Simply Typed Lambda Calculus 34/53

Definable Number-Theoretic Functions
Remark
Troelstra and Schwichtenberg [TS2000, p. 21–22] point out that

However, if we permit ourselves the use of Church numerals of different types, and in
particular liberalize the notion of representation of a function by permitting numerals
of different types for the input and the output, we can represent more than extended
polynomials.

Definable Ordinals in the Simply Typed Lambda Calculus 35/53

Definable Number-Theoretic Functions
Example
Let NatA be the type of natural numbers of type A

NatA := (A → A) → (A → A).

and let nA be a numeral of type NatA. We can define exponentiation by

exp : NatA → NatA→A → NatA := λ m n f x. (n m) f x,

where
exp mA nA→A =β mn

A (n > 0).

Definable Ordinals in the Simply Typed Lambda Calculus 36/53

Definable Ordinals
Abstractions on the representation of natural numbers

No abstraction

We can define two constants

Z : o,

S : o → o,

so natural numbers are represented by terms of the form

S(. . . (S Z) . . .).

Using this representation the definable number-theoretic functions are those definable by
iterating successor (e.g. projection and constant functions) [Dan1999].

(continued on next slide)
Definable Ordinals in the Simply Typed Lambda Calculus 37/53

Definable Ordinals
Abstractions on the representation of natural numbers (continuation)

Abstraction on zero

By abstracting on zero, natural numbers are represented by terms of the form

λ z. S (. . . (S z) . . .).

Using this representation the definable number-theoretic functions are those definable by
iterating successor and addition [Dan1999].

(continued on next slide)

Definable Ordinals in the Simply Typed Lambda Calculus 38/53

Definable Ordinals
Abstractions on the representation of natural numbers (continuation)

Abstraction on zero and successor

By abstracting on zero and successor, natural numbers are represented by the Church
numerals

λ s z. s (. . . (s z) . . .).

And we know which are the definable number-theoretic functions using this representation
(i.e. the extended polynomials).

Definable Ordinals in the Simply Typed Lambda Calculus 39/53

Definable Ordinals
Representations of ordinals below ωω

From the possibles abstractions for representing natural numbers, Danner [Dan1999] defines four
representations (called canonical, additive, arithmetic and intensional) for ordinals below ωω.

Definable Ordinals in the Simply Typed Lambda Calculus 40/53

Definable Ordinals
Notation
For n ∈ N, we define

M0 N := N,

Mn+1 N := M (Mn N).

Definable Ordinals in the Simply Typed Lambda Calculus 41/53

Definable Ordinals
An ω-fold iterator (informally)
We introduced a constant L which ‘represents’ an ω-fold iterator.

Example
The λ-term L S represents the function · + w (the limit of iterating successor).

The λ-term L2 S represents the function · + w2 (the limit of iterating · + w).

The λ-term Ln S represents the function · + wn.

The λ-term S (S (L S (L2 S Z))) represents the ordinal ω2 + w + 2.

Definable Ordinals in the Simply Typed Lambda Calculus 42/53

Definable Ordinals
Definition
The type of ordinal numbers is defined by

ON := (o → o) → o → o.

Definable Ordinals in the Simply Typed Lambda Calculus 43/53

Definable Ordinals
Canonical representations
Let L be of type ON and let α be an ordinal below ωω

α = ωnr + · · · + ωn0 ,

where nr ≥ nr−1 ≥ · · · ≥ n0 and ni ∈ N.

The canonical representation for α, denoted by ᾱ, is defined by

α∗ := (Ln0 s) ((Ln1 s) (. . . ((Lnr s) z) . . .)),
ᾱ := λs.λz.α∗,

where s : ON → ON and z : ON.

Definable Ordinals in the Simply Typed Lambda Calculus 44/53

Definable Ordinal Functions
Definition
An ordinal function φ(α1, . . . , αn) is canonically, additively, arithmetically or intensionally
definable respect to ON in the λ→ iff there exits a closed λ-term F : ONn → ON such that

φ(α1, . . . , αn) = β ⇒ FA1 . . . An βη-reduces to B,

where A1, . . . , An and B are the canonical, additive, arithmetic or intensional representations
for α1, . . . , αn and β, respectively [Dan1999, p. 191].

Definable Ordinals in the Simply Typed Lambda Calculus 45/53

Definable Ordinal Functions
Notation
Let A be a set of ordinal functions. The smallest class of ordinal functions below ωω including
the constant functions, the projection functions, the set A and closed under composition is
denoted by [A].

Definable Ordinals in the Simply Typed Lambda Calculus 46/53

Definable Ordinal Functions

Theorem (Danner [Dan1999], Theorem 4.11)
The ordinal functions canonically definable are exactly the functions

[α 7→ α + 1, α 7→ ωα].

Theorem (Danner [Dan1999], Theorem 4.15)
The ordinal functions additively definable are exactly the functions

[+, α 7→ ωα].

Theorem (Danner [Dan1999], Theorem 4.21)
The ordinal functions arithmetically definable are exactly the functions

[+, ×].

Definable Ordinals in the Simply Typed Lambda Calculus 47/53

Definable Ordinal Functions

Theorem (Danner [Dan1999], Theorem 4.11)
The ordinal functions canonically definable are exactly the functions

[α 7→ α + 1, α 7→ ωα].

Theorem (Danner [Dan1999], Theorem 4.15)
The ordinal functions additively definable are exactly the functions

[+, α 7→ ωα].

Theorem (Danner [Dan1999], Theorem 4.21)
The ordinal functions arithmetically definable are exactly the functions

[+, ×].

Definable Ordinals in the Simply Typed Lambda Calculus 48/53

Definable Ordinal Functions

Theorem (Danner [Dan1999], Theorem 4.11)
The ordinal functions canonically definable are exactly the functions

[α 7→ α + 1, α 7→ ωα].

Theorem (Danner [Dan1999], Theorem 4.15)
The ordinal functions additively definable are exactly the functions

[+, α 7→ ωα].

Theorem (Danner [Dan1999], Theorem 4.21)
The ordinal functions arithmetically definable are exactly the functions

[+, ×].

Definable Ordinals in the Simply Typed Lambda Calculus 49/53

Definable Ordinal Functions
Definition
The weak discriminator function on ordinals is the function defined by [Dan1999, p. 198]

wdiscr(α, β, δ) :=
{

β, if α > 0;
δ, if a = 0.

Theorem (Danner [Dan1999], Theorem 4.24)
The ordinal functions intensionally definable are exactly the functions

[+, ×, wdiscr].

Definable Ordinals in the Simply Typed Lambda Calculus 50/53

Definable Ordinal Functions
Definition
The weak discriminator function on ordinals is the function defined by [Dan1999, p. 198]

wdiscr(α, β, δ) :=
{

β, if α > 0;
δ, if a = 0.

Theorem (Danner [Dan1999], Theorem 4.24)
The ordinal functions intensionally definable are exactly the functions

[+, ×, wdiscr].

Definable Ordinals in the Simply Typed Lambda Calculus 51/53

References
[Bar1992] Henk Barendregt. Lambda Calculi with Types. In: Handbook of Logic in Computer Science.

Volume 2. Ed. by S. Abramsky, Dov M. Gabbay and T. S. E. Maibaum. Clarendon Press,
1992, pp. 117–309 (cit. on p. 13).

[BDS2013] Henk Barendregt, Wil Dekkers and Richard Statman. Lambda Calculus with Types. Cam-
bridge University Press, 2013. doi: 10.1017/CBO9781139032636 (cit. on pp. 19–21, 32).

[Chu1940] Alonzo Church. A Formulation of the Simple Theory of Types. The Journal of Symbolic
Logic 5.2 (1940), pp. 55–68. doi: 10.2307/2266170 (cit. on pp. 7, 8, 10).

[Dan1999] N. Danner. Ordinals and Ordinal Functions Representable in the Simply Typed Lambda
Calculs. Annals of Pure and Applied Logic 97.1-3 (1999), pp. 179–201. doi: 10.1016/
S0168-0072(98)00046-3 (cit. on pp. 29–31, 37, 38, 40, 45, 47–51).

[Hin2008] J. Roger Hindley. Basic Simple Type Theory. Digitally printed version with corrections.
Vol. 42. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2008 (1997) (cit. on p. 13).

Definable Ordinals in the Simply Typed Lambda Calculus 52/53

https://doi.org/10.1017/CBO9781139032636
https://doi.org/10.2307/2266170
https://doi.org/10.1016/S0168-0072(98)00046-3
https://doi.org/10.1016/S0168-0072(98)00046-3

References
[Sch1976] H. Schwichtenberg. Functions Definable in the Simply-Typed Lambda Calculus. Translation

by R. J. Irwin of Definierbare Funktionen im λ-Kalkül mit Typen. Arch. Math. Logic, 1976,
vol 17(3–4), pp. 113–114. 1976. url: http://www.cis.syr.edu/~royer/htc96/fdst.
ps (cit. on pp. 30, 31).

[Sta1979] Richard Statman. The Typed λ-Calculus Is Not Elementary Recursive. Theoretical Com-
puter Science 9.1 (1979), pp. 73–81. doi: 10.1016/0304-3975(79)90007-0 (cit. on
pp. 29–31).

[TS2000] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. 2nd ed. Vol. 44. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2000 (1996). doi:
10.1017/CBO9781139168717 (cit. on pp. 29, 35).

Definable Ordinals in the Simply Typed Lambda Calculus 53/53

http://www.cis.syr.edu/~royer/htc96/fdst.ps
http://www.cis.syr.edu/~royer/htc96/fdst.ps
https://doi.org/10.1016/0304-3975(79)90007-0
https://doi.org/10.1017/CBO9781139168717

	Definable Ordinals in the Simply Typed Lambda Calculus
	Introduction
	Simply Typed Lambda Calculus
	Definable Number-Theoretic Functions
	Definable Ordinals
	Definable Ordinal Functions
	References

