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Ordinal and Cardinal Numbers

Georg Cantor (1845 – 1918)∗

Cantor around 1870
∗Figures source: Wikipedia.
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Ordinal and Cardinal Numbers
Generalisation of natural numbers via two abstractions
Cantor’s definitions of ordinal and cardinal numbers were ‘definitions by abstraction’ [Ivo2013,
pp. 293-4]:

Aquí [Can1955] define Cantor el ‘ordinal’ de un conjunto ordenado como el concepto al
que llegamos cuando hacemos abstracción de la naturaleza de sus elementos y conser-
vamos únicamente su ordenación, de modo que dos conjuntos tienen el mismo ordinal
si y sólo si sus elementos pueden ponerse en correspondencia biunívoca conservando
el orden. Por otra parte, el ‘cardinal’ de un conjunto es el concepto al que llegamos
cuando hacemos abstracción de la naturaleza de sus elementos, así como de toda
posible ordenación.
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Ordinal Numbers Definition
Some definitions

Cantor (1883). Equivalence class of well-ordered sets.
von Neumann (1923). Canonical well-ordered sets.
von Neumann (1928). Transitive sets well-ordered by the membership relation.
Robinson (1937). Sets satisfying some properties without using the theory of ordered sets.
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Cantor (1883): Ordinals as Equivalence Class of Well-Ordered Sets
Definition
A structure is a pair (A, R) consisting of a set A and a binary relation R on A.∗

Definition
Let (A, R) be a structure where R is a relation of order. The Cantor order-type of (A, R) is
the collection of the similar (i.e. order-isomorphic) structures to it.†

∗See, e.g. [End1977].
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Cantor (1883): Ordinals as Equivalence Class of Well-Ordered Sets
Definition
A structure is a pair (A, R) consisting of a set A and a binary relation R on A.∗

Definition
Let (A, R) be a structure where R is a relation of order. The Cantor order-type of (A, R) is
the collection of the similar (i.e. order-isomorphic) structures to it.†

∗See, e.g. [End1977].
†Some authors define the order-types on totally ordered sets (see, e.g. [Men2015, p. 249]) or on well-ordered

sets (see, e.g. [HJ1999, p. 113]). The collection of similar structures is not a set but a class. A generalisation of
the above definitions is the following. A relational/algebraic structure is a set and various relations/operations on
it. In general, a structure is a set and various relations and operations on it (see, e.g. [HJ1999]). The structures
are called ‘isomorphic’ instead of ‘similar’ when working with general structures.
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Cantor (1883): Ordinals as Equivalence Class of Well-Ordered Sets
Definition
An ordinal number is the order-type of a well-ordered set [Can1976].∗

Remark
Note the ‘definition by abstraction’ in the previous definition.

Drawback
The ordinal numbers are not sets but classes.

Discussion
Can we define a data type for representing ordinal numbers from the previous definition?

∗See, e.g. [van1967, p. 346], [Sup1972, p. 129] and [Moo1982, p. 52].
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von Neumann (1923): Ordinals as Canonical Well-Ordered Sets
Motivation
To define the ordinal numbers as sets.

von Neumann’s informal definition
von Neumann [von1967] initially described the ordinals numbers by:

i) Every ordinal is the set of ordinals that precede it.
ii) The first ordinal is the empty set.

Definition
Let a be a set. The successor of a is defined by

succ a := a ∪ {a}.
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von Neumann (1923): Ordinals as Canonical Well-Ordered Sets
Example
Some von Neumann ordinals.

0 := ∅,

1 := succ 0 = {0} = {∅},

2 := succ 1 = {0, 1} = {∅, {∅}},

...

ω := {0, 1, 2, . . . }.

Note that
0 ∈ 1 ∈ 2 ∈ · · · and 0 ⊆ 1 ⊆ 2 ⊆ · · · .
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von Neumann (1923): Ordinals as Canonical Well-Ordered Sets
Example
Some von Neumann ordinals.

ω := {0, 1, 2, . . . },

ω + 1 := succ ω = {0, 1, 2, . . . , ω},

ω + 2 := succ (ω + 1) = {0, 1, 2, . . . , ω, ω + 1},

. . .

ω · 2 := ω + ω = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . }.

Note also that

ω ∈ ω + 1 ∈ ω + 2 ∈ · · · and ω ⊆ ω + 1 ⊆ ω + 2 ⊆ · · · .
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von Neumann (1923): Ordinals as Canonical Well-Ordered Sets
Definition
Let (A, ≺) be a well-ordered set and let a ∈ A. The initial ≺-segment of A generated by a
is the set of all elements of A that strictly precede a, that is,

seg a := { x ∈ A | x ≺ a }.

von Neumann’s (1923) definition
‘A set x is an ordinal number iff there exists a well-ordering R on x such that every element
of x is equal to its corresponding initial R-segment.’ [Dun1966, p. 13]

Example
For the ordinal number 3 = {0, 1, 2}, the elements 0, 1 and 2 are equals to the initial ϵ-segments
seg 0, seg 1 and seg 2, respectively.
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von Neumann (1923): Ordinals as Canonical Well-Ordered Sets
Drawback
The ordinal numbers are sets but their definition is based on well-orderings.

Discussion
Can we define a data type for representing ordinal numbers from the previous definition?
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Let’s Count
Fasting

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , w · 2, . . . , ω · 3, . . . ,

w2, . . . , ω3, . . . , ωω, . . . , ωωω
, . . . , ωωω

. . .

, . . . ,
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Let’s Count
A little slower

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + ω = ω · 2,

ω · 2 + 1, ω · 2 + 2, . . . , ω · 3, . . . , ω · 4, . . . , ω · ω = ω2,

ω2 + 1, ω2 + 2, . . . , ω2 + ω, ω2 + ω + 1, ω2 + ω + 2, . . . , ω2 + ω · 2, . . . ,

ω2 + ω · 3, . . . , ω2 · 2, . . . , ω2 · 3, . . . , ω3, . . . , ω4, . . . , ωω,

ωω + 1, ωω + 2, . . . , ωω·2, . . . , ωω2
, . . . , ωωω

, . . . , ωωω
. . .

, . . . ,

Ordinal Numbers 23/58



Let’s Count
A little slower

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + ω = ω · 2,

ω · 2 + 1, ω · 2 + 2, . . . , ω · 3, . . . , ω · 4, . . . , ω · ω = ω2,

ω2 + 1, ω2 + 2, . . . , ω2 + ω, ω2 + ω + 1, ω2 + ω + 2, . . . , ω2 + ω · 2, . . . ,

ω2 + ω · 3, . . . , ω2 · 2, . . . , ω2 · 3, . . . , ω3, . . . , ω4, . . . , ωω,

ωω + 1, ωω + 2, . . . , ωω·2, . . . , ωω2
, . . . , ωωω

, . . . , ωωω
. . .

, . . . ,

Ordinal Numbers 24/58



Let’s Count
A little slower

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + ω = ω · 2,

ω · 2 + 1, ω · 2 + 2, . . . , ω · 3, . . . , ω · 4, . . . , ω · ω = ω2,

ω2 + 1, ω2 + 2, . . . , ω2 + ω, ω2 + ω + 1, ω2 + ω + 2, . . . , ω2 + ω · 2, . . . ,

ω2 + ω · 3, . . . , ω2 · 2, . . . , ω2 · 3, . . . , ω3, . . . , ω4, . . . , ωω,

ωω + 1, ωω + 2, . . . , ωω·2, . . . , ωω2
, . . . , ωωω

, . . . , ωωω
. . .

, . . . ,

Ordinal Numbers 25/58



Let’s Count
A little slower

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + ω = ω · 2,

ω · 2 + 1, ω · 2 + 2, . . . , ω · 3, . . . , ω · 4, . . . , ω · ω = ω2,

ω2 + 1, ω2 + 2, . . . , ω2 + ω, ω2 + ω + 1, ω2 + ω + 2, . . . , ω2 + ω · 2, . . . ,

ω2 + ω · 3, . . . , ω2 · 2, . . . , ω2 · 3, . . . , ω3, . . . , ω4, . . . , ωω,

ωω + 1, ωω + 2, . . . , ωω·2, . . . , ωω2
, . . . , ωωω

, . . . , ωωω
. . .

, . . . ,

Ordinal Numbers 26/58



Let’s Count
A little slower

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + ω = ω · 2,

ω · 2 + 1, ω · 2 + 2, . . . , ω · 3, . . . , ω · 4, . . . , ω · ω = ω2,

ω2 + 1, ω2 + 2, . . . , ω2 + ω, ω2 + ω + 1, ω2 + ω + 2, . . . , ω2 + ω · 2, . . . ,

ω2 + ω · 3, . . . , ω2 · 2, . . . , ω2 · 3, . . . , ω3, . . . , ω4, . . . , ωω,

ωω + 1, ωω + 2, . . . , ωω·2, . . . , ωω2
, . . . , ωωω

, . . . , ωωω
. . .

, . . . ,

Ordinal Numbers 27/58



von Neuman (1928): Ordinals as Transitive Sets Well-Ordered by the
Membership Relation
Definition
A set A is well-ordered by the membership relation iff the relation

ϵA := { ⟨x, y⟩ ∈ A × A | x ∈ y }

is a well-ordering on A.

Definition
A set A is transitive iff every element of A is a subset of A.∗
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von Neuman (1928): Ordinals as Transitive Sets Well-Ordered by the
Membership Relation
Definition
A set A is well-ordered by the membership relation iff the relation

ϵA := { ⟨x, y⟩ ∈ A × A | x ∈ y }

is a well-ordering on A.

Definition
A set A is transitive iff every element of A is a subset of A.∗

∗See, e.g. [HJ1999, Ch. 6, Def. 2.1].
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von Neuman (1928): Ordinals as Transitive Sets Well-Ordered by the
Membership Relation
Definition
A set α is an ordinal number iff [von1928]∗

the set is transitive and
the set is well-ordered by the membership relation.

∗See, e.g. [Rub1967, p. 176] and [Jec1971, p. 7]. This is the definition used by [HJ1999].
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Robinson (1937): Ordinals as Sets Satisfying Some Properties
Motivation
The theory of ordinal numbers can be constructed without using the theory of ordered sets.
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Robinson (1937): Ordinals as Sets Satisfying Some Properties
Definition
A set A is connected under ϵ iff

∀x ∀y (x, y ∈ A → x ∈ y ∨ x = y ∨ y ∈ x).
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Robinson (1937): Ordinals as Sets Satisfying Some Properties
Definition
A set α is an ordinal number iff [Rob1937]∗

the set is transitive and
the set is connected under ϵ.

∗Drake [Dra1974, p. 24] introduces this definition under Zermelo-Fraenkel set theory. See, also, [Dun1966,
p. 14] and [van1967, p. 348]. It is also the definition used by the Mizar Mathematical Library (5.68.1412 (02
March 2022)). See [Ban1990] and
https://mizar.uwb.edu.pl/version/8.1.11_5.68.1412/mml/ordinal1.miz.
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Robinson (1937): Ordinals as Sets Satisfying Some Properties
Discussion
Can we define a data type for representing ordinal numbers from the previous definition?
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Properties of Ordinals
Remark
Recall that a set α is an ordinal number iff

the set is transitive and
the set is well-ordered by the membership relation.

Some properties
See slides for the subject ‘Ordinal Numbers’ in http://www1.eafit.edu.co/asr/courses/
set-theory-cm0832/.
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Properties of Ordinals
Definition
There are three sorts of ordinal numbers:∗ An ordinal number α is

i) the zero ordinal,
ii) a successor ordinal iff α has an immediate predecessor, i.e. α = succ β for some

ordinal β, or
iii) a limit ordinal iff α is non-zero and α has no an immediate predecessor.†

∗See, e.g. [Rog1992, p. 220] and [End1977, p. 203].
†Since zero has no an immediate predecessor, some authors include it as a limit ordinal, see, e.g. [HJ1999,

p. 108].
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An Ordinal Numbers Class
Remark
From previous theorems we know that:

i) zero is an ordinal,
ii) if α is an ordinal, then succ α is an ordinal and
iii) if A is a set of ordinals, then

⋃
A is an ordinal.
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An Ordinal Numbers Class
Definition
Rubin [Rub1967, pp. 175-6] points out that under an appropriate (but not explicitly mentioned)
axiomatic, the class of ordinal numbers, denoted by On, could be defined by∗

∅ ∈ On
α ∈ On

succ α ∈ On
A ⊆ On⋃
A ∈ On

Discussion
Can we inductively define classes? Suggesting reading: Aczel [Acz1977] and Curi [Cur2018].

∗See, also, [Cro1969, p. 11].
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An Ordinal Numbers Class
Definition
Phillips [Phi1992, pp. 158-9] introduces the ordinals via the following inductive definition:

Zero is an ordinal.
If α is an ordinal, then succ α is an ordinal.
If A is a downwards-closed segment of ordinals (i.e. if α ∈ A and β < α, then β ∈ A)
with no greatest element, then sup A is an ordinal.

Discussion
However, the author points out the following flaws of above definition:

In order to understand ‘downwards-closed’ we have to define the ordering on ordinals.
This will have to be defined simultaneously with the ordinals. Furthermore the induct-
ive clause for limits use an infinite set A. So the definition is not finitary.
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Transfinite Induction and Recursion
Theorem (Transfinite induction principle (one version))
Let φ(x) a propositional function. Assume that

i) φ(0).
ii) For all ordinals α, φ(α) implies φ(succ α).
iii) For all limit ordinals, if φ(β) for all β < α, then φ(α).

Then φ(α) for all ordinals α.∗

∗See, e.g. [HJ1999, p. 115].
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Transfinite Induction and Recursion
Theorem (Transfinite recursion theorem)
Whiteboard.
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Ordinal Arithmetic
Definition
We define the addition of ordinals by transfinite recursion. For any ordinals α and β:

α + 0 = α,

α + (succ β) = succ (α + β),
α + β = sup { α + δ | δ < β }, if β is a limit ordinal.

Example
If α = β = ω, then

ω + ω = sup { ω + n | n < ω }.
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Ordinal Arithmetic
Definition
We define the multiplication of ordinals by transfinite recursion. For any ordinals α and β:

α · 0 = 0,

α · (succ β) = α · β + α,

α · β = sup { α · δ | δ < β }, if β is a limit ordinal.
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Ordinal Arithmetic
Definition
We define the exponentiation of ordinals by transfinite recursion. For any ordinals α and β:

α0 = 1,

α(succ β) = αβ · α,

αβ = sup
{

αδ
∣∣∣ δ < β

}
, if β is a limit ordinal.
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Cantor Normal Formal
Remark
Recall that any positive integer has a decimal representation. For example,

562 = 5 ∗ 102 + 6 ∗ 101 + 2 ∗ 100.

Theorem
Let b be an integer greater than 1. Every integer x > 0 can be uniquely represented as

x = xn ∗ bn + xn−1 ∗ bn−1 + · · · + x1 ∗ b1 + x0 ∗ b0,

where xn ̸= 0 and every xi is a non-negative integer less that b.∗ This representation is the
representation of x to the base b.
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Cantor Normal Formal
Remark
Recall that any positive integer has a decimal representation. For example,

562 = 5 ∗ 102 + 6 ∗ 101 + 2 ∗ 100.

Theorem
Let b be an integer greater than 1. Every integer x > 0 can be uniquely represented as

x = xn ∗ bn + xn−1 ∗ bn−1 + · · · + x1 ∗ b1 + x0 ∗ b0,

where xn ̸= 0 and every xi is a non-negative integer less that b.∗ This representation is the
representation of x to the base b.

∗See, e.g. [And1971, Theorem 1-3, p. 8].
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Cantor Normal Formal
Example (Decimal representation)
Every integer x > 0 can be uniquely represented as

x = xn ∗ 10n + xn−1 ∗ 10n−1 + · · · + x1 ∗ 101 + x0 ∗ 100,

where xn ̸= 0, and 0 ≤ xi < 10, for every xi.
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Cantor Normal Formal
Theorem (Cantor normal form (one version))
Every ordinal α > 0 can be uniquely represented as

α = ωβ1 · k1 + ωβ2 · k2 + · · · + ωβn · kn,

where β1 > β2 > · · · > βn are ordinals and every ki is a non-zero finite ordinal.
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Cantor Normal Formal
Theorem (Cantor normal form (other version))
By setting all the non-zero finite ordinals ki equal to 1 and allowing the exponents to be equal,
Cantor normal form can be rewriting by:

Every ordinal α > 0 can be uniquely represented as

α = ωβ1 + ωβ2 + · · · + ωβn ,

where β1 ≥ β2 ≥ · · · ≥ βn are ordinals.
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Natural Operations
Definition
Let α and β be ordinals. We can represent them by

α = ωδ1 · k1 + ωδ2 · k2 + · · · + ωδn · kn,

β = ωδ1 · j1 + ωδ2 · j2 + · · · + ωδn · jn,

where δ1 > δ2 > · · · > δn are ordinals and every ki and ji is a finite ordinal.

The natural sum of α and β is defined by∗

α # β := ωδ1 · (k1 + j1) + ωδ2 · (k2 + j2) + · · · + ωδn · (kn + jn).

∗See, e.g. [Sie1965, § 28, p. 366].
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Natural Operations
Theorem
For any ordinals α and β:∗

i) α # β = β # α.
ii) α + β ≤ α # β.

∗See, e.g. [Sie1965, § 28, p. 366].
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