
Ordinals and Typed Lambda Calculus
Lambda Calculus

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2018-2

(Last modification: 28th December 2024)

Introduction

Alonzo Church (1903 – 1995)∗

∗Figures sources: History of computers, Wikipedia and MacTutor History of Mathematics.
Lambda Calculus 2/33

https://history-computer.com/ModernComputer/thinkers/Church.html
https://en.wikipedia.org/wiki/Alonzo_Church
http://www-history.mcs.st-and.ac.uk/Biographies/Church.html

Introduction
Some remarks

A formal system invented by Church around 1930s.
The goal was to use the λ-calculus in the foundation of mathematics.
Intended for studying functions and recursion.
Computability model.
A free-type functional programming language.
λ-notation (e.g. anonymous functions and currying).

Lambda Calculus 3/33

Application, Abstraction and Curryfication
Application
Application of the function M to argument N is denoted by M N (juxtaposition).

Abstraction
‘If M is any formula containing the variable x, then λx[M] is a symbol for the function whose
values are those given by the formula.’ [Chu1932, p. 352]

Curryfication
‘Adopting a device due to Schönfinkel, we treat a function of two variables as a function of one
variable whose values are functions of one variable, and a function of three or more variables
similarly.’ [Chu1932, p. 352]

Lambda Calculus 4/33

Application, Abstraction and Curryfication
Application
Application of the function M to argument N is denoted by M N (juxtaposition).

Abstraction
‘If M is any formula containing the variable x, then λx[M] is a symbol for the function whose
values are those given by the formula.’ [Chu1932, p. 352]

Curryfication
‘Adopting a device due to Schönfinkel, we treat a function of two variables as a function of one
variable whose values are functions of one variable, and a function of three or more variables
similarly.’ [Chu1932, p. 352]

Lambda Calculus 5/33

Application, Abstraction and Curryfication
Application
Application of the function M to argument N is denoted by M N (juxtaposition).

Abstraction
‘If M is any formula containing the variable x, then λx[M] is a symbol for the function whose
values are those given by the formula.’ [Chu1932, p. 352]

Curryfication
‘Adopting a device due to Schönfinkel, we treat a function of two variables as a function of one
variable whose values are functions of one variable, and a function of three or more variables
similarly.’ [Chu1932, p. 352]

Lambda Calculus 6/33

Lambda Terms
Definition
Let V be a denumerable set of variables. The set of λ-terms, denoted by Λ, is inductively
defined by

x ∈ V ⇒ x ∈ Λ (variable)
M, N ∈ Λ ⇒ (M N) ∈ Λ (application)

M ∈ Λ, x ∈ V ⇒ (λx.M) ∈ Λ (λ-abstraction)

Lambda Calculus 7/33

Lambda Terms
Remark
Usually, the set of λ-terms Λ is defined by the abstract grammar∗

Λ ∋ t ::= x (variable)
| t t (application)
| λx.t (λ-abstraction)

∗See, e.g. [Pie2002].
Lambda Calculus 8/33

Lambda Terms
Notation
The symbol ‘≡’ denotes the syntactic identity.

Conventions
λ-term variables will be denoted by x, y, z,
λ-terms will be denoted by M, N, P, Q,

Lambda Calculus 9/33

Lambda Terms
Conventions and syntactic sugar

Outermost parentheses are not written.
Application has higher precedence, that is,

λ x. M N := (λ x. (M N)).

Application associates to the left, that is,

M N1 N2 . . . Nk := (. . . ((M N1) N2) . . . Nk).

Lambda abstraction associates to the right, that is,

λ x1 x2 . . . xn. M := λ x1. λ x2. . . . λ xn. M

:= (λ x1. (λ x2. (. . . (λxn.M) . . .))).

Lambda Calculus 10/33

Lambda Terms
Example
Using the conventions and syntactic sugar.

(λ x y z. x z (y z)) u v w

≡ (λ x y z. (x z) (y z)) u v w (left-associative application)
≡ ((λ x y z. (x z) (y z)) u) v w (left-associative application)
≡ (((λ x y z. (x z) (y z)) u) v) w (left-associative application)
≡ (((λ x y z. ((x z) (y z))) u) v) w (application higher precedence)
≡ (((λ x. λ y. λ z. ((x z) (y z))) u) v) w (right-associative λ-abstraction)
≡ (((λ x. λ y. (λ z. ((x z) (y z)))) u) v) w (right-associative λ-abstraction)
≡ (((λ x. (λ y. (λ z. ((x z) (y z))))) u) v) w (right-associative λ-abstraction)
≡ ((((λ x. (λ y. (λ z. ((x z) (y z))))) u) v) w) (remove outermost parentheses)

Lambda Calculus 11/33

Binding
Definition
A variable x occurs free in M if x is not in the scope of λx. Otherwise, x occurs bound.

Definition
The set of free variables in M , denoted by FV(M), is inductively defined by

FV(x) := {x},

FV(M N) := FV(M) ∪ FV(N),
FV(λx.M) := FV(M) − {x}.

Lambda Calculus 12/33

Substitution
Definition
The result of substituting N for every free occurrence of x in M , and changing bound
variables to avoid clashes, denoted by M [x 7→ N], is defined by [HS2008, Definition 1.12]

x[x 7→ N] := N ;
y[x 7→ N] := y, if y ̸≡ x;

(P Q)[x 7→ N] := P [x 7→ N] Q[x 7→ N];
(λx.P)[x 7→ N] := λx.P ;
(λy.P)[x 7→ N] := λy.P, if y ̸≡ x and x ̸∈ FV(P);
(λy.P)[x 7→ N] := λy.P [x 7→ N], if y ̸≡ x, x ∈ FV(P) and y ̸∈ FV(N);
(λy.P)[x 7→ N] := λz.P [x 7→ N][y 7→ z], if y ̸≡ x, x ∈ FV(P) and y ∈ FV(N);

where in the last equation, the variable z is chosen such that z ̸∈ FV(N P).

Lambda Calculus 13/33

Substitution
Example
(y (λ v. x v))[x 7→ (λ y. v y)] ≡ y (λ z. (λ y. v y) z) (with z ̸≡ v, y, x).

Lambda Calculus 14/33

Conversion Rules
Introduction
The functional behaviour of the λ-calculus is formalised through of their conversion rules:

λx.N =α λy.(N [x 7→ y]) (α-conversion)

(λx.M) N =β M [x 7→ N] (β-conversion)

λ x. M x =η M (η-conversion)

Lambda Calculus 15/33

Alpha Congruence
Definition
A changed of bound variables in M is to replace a subterm λx.N of M by λy.(N [x 7→ y])
where y does not occur in N .

Definition
A λ-term M is α-congruent with N , denoted by M ≡α N , iff N results from M by a finite
(perhaps empty) series of changes of bound variables.

Example
Whiteboard.

Lambda Calculus 16/33

Alpha Congruence
Theorem
The relation ≡α is an equivalence relation.∗

Convention
Following Barendregt [Bar2004, Convention 2.1.12], we syntactically identified λ-terms that are
α-congruent, that is,

M ≡ N := M ≡α N.

∗See, e.g. [HS2008, Lemma 1.19b].
Lambda Calculus 17/33

Compatible Relations
Definition
A binary relation R on Λ is compatible iff ∗

(M, N) ∈ R ⇒


(P M, P N) ∈ R,

(M P, N P) ∈ R,

(λx.M, λx.N) ∈ R.

∗See, e.g. [Bar2004, Definition 3.1.1i].
Lambda Calculus 18/33

Beta Reduction
Definition
The binary relation β on Λ is defined by

β := { ((λx.M) N, M [x 7→ N]) | M, N ∈ Λ }.

Lambda Calculus 19/33

Beta Reduction
Definition
The binary relation one step β-reduction on Λ, denoted by →β, is the compatible closure
of β.

The →β relation can be inductively defined by∗

(M, N) ∈ β

M →β N

M →β N

P M →β P N

M →β N

M P →β N P

M →β N

λx.M →β λx.N

∗See, e.g. [Bar2004, Definition 3.1.5].
Lambda Calculus 20/33

Beta Reduction
Definition
The binary relation β-reduction on Λ, denoted by ↠β, is the reflexive and transitive closure
of →β.

The ↠β relation can be inductively defined by∗

M →β N

M ↠β N

M ↠β M

M ↠β N N ↠β P

M ↠β P

∗See, e.g. [Bar2004, Definition 3.1.5].
Lambda Calculus 21/33

Beta Equality or Beta Convertibility
Definition
The binary relation β-equality (or β-convertibility) on Λ, denoted by =β, is the equivalence
relation generated by ↠β.

The =β relation can be inductively defined by∗

M ↠β N

M =β N

M =β N

N =β M

M =β N N =β P

M =β P

∗See, e.g. [Bar2004, Definition 3.1.5].
Lambda Calculus 22/33

Normal Forms
Definition
A β-redex is a λ-term of the form (λx.M) N .

Definition
A λ-term which contains no β-redex is in β-normal form (β-nf).

Definition
A λ-term N is a β-nf of M (or M has the β-nf M) iff N is a β-nf and M =β N .

Example
Whiteboard.

Lambda Calculus 23/33

Normal Forms
Remark
Church [Chu1935; Chu1936] proved that the set

{ M ∈ Λ | M has a β-normal form }

is not computable∗ (i.e. undecidable). This was the first undecidable set ever.†

∗We use the term ‘computable’ rather than ‘recursive’ following to [Soa1996].
†See also [Bar1992].

Lambda Calculus 24/33

Combinators
Definition
A combinator (or closed λ-term) is a λ-term without free variables.

Convention
A combinator called for example pred will be denoted by pred.

Lambda Calculus 25/33

Combinators
Example
Some common combinators.

B := λ f g x. f (g x) (a composition combinator)
B′ := λ f g x. g (f x) (a reversed composition combinator)
C := λ x y z. x z y (a permuting combinator)
I := λx.x (an identity combinator)

K := λ x y. x (a projection combinator)
M := λ x. x x (a doubling combinator)
S := λ f g x. f x (g x) (a stronger composition combinator)
T := λ x y. y x (a permuting combinator)
V := λ x y z. z y x (a permuting combinator)
W := λ f x. f x x (a doubling combinator)

Lambda Calculus 26/33

Combinators
Remark
The programs in a programming language based on λ-calculus are combinators.

Remark
The combinators K and S (i.e. the combinatory logic) are a Turing-complete language.

Lambda Calculus 27/33

Fixed-Point Combinators
Definition
A fixed-point combinator is any combinator fix such that for all terms M ,

fix M =β M (fix M).

Theorem
The combinator Y := λ f. V V , where V ≡ λ x. f (x x), is a fixed-point combinator.∗

Theorem
The combinator U U, where U := λ u x. x (u u x), is a fixed-point combinator.†

∗According to [HS2008, p. 36], this combinator was hinted by Curry in 1929 and first published by
Rosenbloom [Ros1950]. See also [Bar2004, Corollary 6.1.3].

†Defined by Turing [Tur1937]. See, also [Bar2004, Definition 6.1.4].
Lambda Calculus 28/33

Recursion Using Fixed-Points
Example
An informal example using the factorial function [Pey1987, § 2.4.1].

fac := λ n. if (n == 0) then 1 else n ∗ fac (n − 1) (combinator)
≡ λ n. (. . . fac . . .) (recursive combinator)
≡ (λ f. λ n. (. . . f . . .)) fac (λ-abstraction on fac)

Now, we can redefine the factorial function using fix.

h := λ f. λ n. (. . . f . . .) (non-recursive combinator)

fac := fix h (fac is a fixed-point of h)

(continued on next slide)

Lambda Calculus 29/33

Recursion Using Fixed-Points
Example
An informal example using the factorial function [Pey1987, § 2.4.1].

fac := λ n. if (n == 0) then 1 else n ∗ fac (n − 1) (combinator)
≡ λ n. (. . . fac . . .) (recursive combinator)
≡ (λ f. λ n. (. . . f . . .)) fac (λ-abstraction on fac)

Now, we can redefine the factorial function using fix.

h := λ f. λ n. (. . . f . . .) (non-recursive combinator)

fac := fix h (fac is a fixed-point of h)

(continued on next slide)
Lambda Calculus 30/33

Recursion Using Fixed-Points
Example (continuation)

fac 1 ≡ fix h 1
=β h (fix h) 1
≡ (λ f. λ n. (. . . f . . .)) (fix h) 1
↠β if (1 == 0) then 1 else 1 ∗ (fix h 0)
↠β 1 ∗ (fix h 0)
=β 1 ∗ (h(fix h) 0)
≡ 1 ∗ ((λ f. λ n. (. . . f . . .)) (fix h) 0)
↠β 1 ∗ (if (0 == 0) then 1 else 1 ∗ (fix h (−1)))
↠β 1 ∗ 1
↠β 1

Lambda Calculus 31/33

References
[Bar2004] H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. Revised edition, 6th im-

pression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier, 2004
(1981) (cit. on pp. 17, 18, 20–22, 28).

[Bar1992] Henk Barendregt. Functional Programming and Lambda Calculus. In: Handbook of Theor-
etical Computer Science. Volume B. Formal Models and Semantics. Ed. by J. van Leeuwen.
Second impression. MIT Press, 1992 (1990). Chap. 7. doi: 10.1016/B978-0-444-88074-
1.50012-3 (cit. on p. 24).

[Chu1932] Alonzo Church. A Set of Postulates for the Foundation of Logic. Annals of Mathematics
33.2 (1932), pp. 346–366. doi: 10.2307/1968337 (cit. on pp. 4–6).

[Chu1935] Alonzo Church. An Unsolvable Problem of Elementary Number Theory. Preliminar Report
(Abstract). Bulletin of the American Mathematical Society 41.5 (1935), pp. 332–333. doi:
10.1090/S0002-9904-1935-06102-6 (cit. on p. 24).

[Chu1936] Alonzo Church. An Unsolvable Problem of Elementary Number Theory. American Journal
of Mathematics 58.2 (1936), pp. 345–363. doi: 10.2307/2371045 (cit. on p. 24).

Lambda Calculus 32/33

https://doi.org/10.1016/B978-0-444-88074-1.50012-3
https://doi.org/10.1016/B978-0-444-88074-1.50012-3
https://doi.org/10.2307/1968337
https://doi.org/10.1090/S0002-9904-1935-06102-6
https://doi.org/10.2307/2371045

References
[HS2008] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators. An Introduc-

tion. Cambridge University Press, 2008 (cit. on pp. 13, 17, 28).
[Pey1987] Simon L. Peyton Jones. The Implementation of Functional Programming Languages. Series

in Computer Sciences. Prentice-Hall International, 1987 (cit. on pp. 29, 30).
[Pie2002] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002 (cit. on p. 8).
[Ros1950] Paul C. Rosenbloom. The Elements of Mathematical Logic. Dover Publications, 1950 (cit.

on p. 28).
[Soa1996] Robert I. Soare. Computability and Recursion. The Bulletin of Symbolic Logic 2.3 (1996),

pp. 284–321. doi: 10.2307/420992 (cit. on p. 24).
[Tur1937] A. M. Turing. The p-Function in λ-K-Conversion. The Journal of Symbolic Logic 4.2

(1937), p. 164. doi: 10.2307/2268281 (cit. on p. 28).

Lambda Calculus 33/33

https://doi.org/10.2307/420992
https://doi.org/10.2307/2268281

	Lambda Calculus
	Introduction
	Syntax
	Conversion Rules
	Combinators
	References

