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Introduction
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Introduction
Some remarks

Church and Kleene defined the λ-definable ordinals in [Kle1937], [CK1937], [Chu1938]
and [Kle1938].
The λ-definable ordinals are a proper subset of the set of countable ordinals.
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Starting the Representation
Basic combinators
The representation of countable ordinals has the following basic combinators:

0o := λm. m c1,

succo := λ a m. m c2 a,

limo := λ a r m. m c3 a r.
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Ordinals Representation
Representation
The representation of countable ordinals in the λ-calculus is inductively defined by [CK1937]:

1. If a combinator a represents an ordinal α, and a′ =β a, then a′ also represents α.
2. The combinator 0o represents the ordinal 0.
3. If a combinator a represents an ordinal α, then succo a represents the successor of α.
4. If the ordinal α is the limit of an increasing ω-sequence of ordinals ⟨αn⟩n∈N and if r is a

combinator such that the λ-terms

r 0o, r (succo 0o), r (succo (succo 0o)), . . .

represent the ordinals α0, α1, α2, . . . , respectively, then limo 0o r represents α.
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Ordinals Representation
Example
The finite ordinals are representable by

0o := λ m. m c1,

(n + 1)o := succo no.

Hence,

0o =β λ m. m c1,

1o =β λ m. m c2 (λ m. m c1),
2o =β λ m. m c2 (λ m. m c2 (λ m. m c1)),
3o =β λ m. m c2 (λ m. m c2 (λ m. m c2 (λ m. m c1))).
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Ordinals Representation
Example
Recall that I := λx.x. The first transfinite countable ordinal ω is representable by

ωo := limo 0o I.
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Ordinals Representation
Example
Since that ω · 2 can be defined by

ω · 2 = lim
n∈N

⟨ω, ω + 1, ω + 2, . . .⟩,

to represent this ordinal, we need to define a combinator r such that

r 0o =β ωo,

r (n + 1)o =β succo (r no).
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Lambda Definable Ordinals
Definition
A (countable) ordinal is λ-definable iff there is a combinator representing it [CK1937, p. 14].

Example
The finite ordinals and the ordinals ω and ω · 2 are λ-definable.
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Lambda Definable Ordinals
Theorem
There are countable ordinals which are not λ-definable [CK1937, p. 14].

Proof.
The λ-terms are denumerable but the countable ordinals are not. Therefore, there is a least
countable ordinal ξ which is not λ-definable. Moreover, any countable ordinal greater than ξ is
neither λ-definable.

Remark
Note that the above proof is not constructive.
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Lambda Definable Ordinals
Remark
The least countable ordinal which is not λ-definable is denoted ωCK

1 , the Church-Kleene ω1.∗

∗See, e.g. [Mos2009].
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Constructive Ordinals
Definition
An ordinal α is constructive (first definition) iff α is λ-definable [Chu1938].
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Lambda Definable Ordinal Functions
Example
Addition, multiplication and exponentiation on λ-definable ordinals are λ-definable functions.
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Lambda Definable Ordinal Functions
Example
It is possible to define a predecessor function on λ-definable ordinals with the following behaviour:

predo 0o =β 0o,

predo (succo no) =β no

predo (limo no r) =β limo no r

In relation to the third equation, Church and Kleene [CK1937, Footnote 9] wrote that it was
somewhat arbitrary.
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Lambda Definable Ordinal Functions
Theorem
Let CO be the set of countable ordinals. The following function is not λ-definable [Chu1938]:

φ : CO × CO → CO

φ(α, β) :=


0, if α < β;
1, if α = β;
2, if α > β.
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Lambda Definable Ordinal Functions
Remark
In relation to the previous theorem, Church wrote:

This is not surprising. It is, for instance, not difficult to give examples of pairs of
constructive definitions of ordinals such that the question whether the ordinals defined
are equal, or which of the two is greater, depends on this or that unsolved problem of
number theory; and indeed this may be done without employing any ordinal greater
than ω2. [Chu1938, p. 231]
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