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Cantor’s First and Second Number Classes

Cantor's first number class are the finite ordinals and his second number class are the denumer-
able ordinals. In words of Ivorra Castillo [Ivo2013, p. 293]:

Segtin explicaba [Cantor], los nimeros transfinitos se obtienen mediante dos principios.
El ‘primer principio de generacion’ consiste en afiadir una unidad. Es el principio que,
por si sélo, genera los nimeros naturales: 0, 1, 2, 3, ... A éstos los llamé ‘nimeros
transfinitos de primera especie’.
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Cantor’s First and Second Number Classes

Cantor's first number class are the finite ordinals and his second number class are the denumer-
able ordinals. In words of Ivorra Castillo [Ivo2013, p. 293]:

Segtin explicaba [Cantor], los nimeros transfinitos se obtienen mediante dos principios.
El ‘primer principio de generacion’ consiste en afiadir una unidad. Es el principio que,
por si sélo, genera los nimeros naturales: 0, 1, 2, 3, ... A éstos los llamé ‘nimeros
transfinitos de primera especie’.

Ahora bien, Cantor afirmaba que, cuando tenemos una sucesion inacabada de niimeros
transfinitos, siempre podemos postular la existencia de un nuevo ndmero transfinito
como inmediato posterior a todos ellos, y a esto lo llamé el ‘segundo principio de
generacion’.

(continued on next slide)

Countable and Uncountable Ordinals 3/29



Cantor’s First and Second Number Classes

(continuation)

Asi, tras la sucesion de todos los niimeros de primera especie, el segundo principio nos
da la existencia de un nuevo nimero transfinito, el primero de los niimeros de segunda

especie, al que Cantor llamé w. A éste podemos aplicarle de nuevo el primer principio,
para obtener w + 1, w + 2, etc ...
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Cantor’s First and Second Number Classes

(continuation)

Asi, tras la sucesion de todos los niimeros de primera especie, el segundo principio nos
da la existencia de un nuevo nimero transfinito, el primero de los niimeros de segunda
especie, al que Cantor llamé w. A éste podemos aplicarle de nuevo el primer principio,
para obtener w + 1, w + 2, etc ...

Cantor definié los nimeros transfinitos de segunda especie como los ndmeros transfini-
tos que dejan tras de si una cantidad numerable de nimeros transfinitos.
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Church’'s Redefinition of the Second Number Class

Note that Cantor's first and second number classes are disjoint. Church redefined the second
number class by including the first number class on it [Chul938, p. 225]:

The second number class may be described as the simply ordered set which results
when we take 0 as the first (or least) element of the set and allow the two following
processes of generation: (1) given any element of the set, to generate the element
which next follows it (the least element greater than it); (2) given any infinite increasing
sequence of elements, of the order type of the natural numbers, to generate the element
which next follows the sequence (the least element greater than every element of the
sequence). The elements of the set are ordinals.
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Number Classes Terminology

Remark

In relation to the current use of the number classes terminology, Hancock [Han2008, p. 10]
wrote:

This terminology [first and second number classes| comes from Cantor. You'll prob-
ably encounter it. But beware, sometimes people mean slightly different things by this
‘number class’ talk. Nowadays, most people probably understand number-classes cu-
mulatively, so that the second number class contains the first number class. Whereas
for Cantor himself, the number classes were disjoint.
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Countable Ordinals

Definition
A countable ordinal is an ordinal whose cardinality is countable (i.e. either finite or denumer-
able).
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Countable Ordinals

Definition
A countable ordinal is an ordinal whose cardinality is countable (i.e. either finite or denumer-
able).

Remark

Note that the countable ordinals are the ordinals in the (cumulative) second number class.
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Countable Ordinals

Definition
A countable ordinal is an ordinal whose cardinality is countable (i.e. either finite or denumer-
able).

Remark

Note that the countable ordinals are the ordinals in the (cumulative) second number class.

Question

Do you want to know some countable ordinals? The fun can start in Baez's (three parts) blog
‘Large Countable Ordinals’.*

*Available at
https://johncarlosbaez.wordpress.com/2016/06/29/large-countable-ordinals-part-1/ .
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The First Epsilon Ordinal

A description of ¢
The ordinal ¢ is defined by

w WY we
eozzsup{w,w ,wY L w ,}
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The First Epsilon Ordinal

A description of ¢

The ordinal ¢ is defined by
€0 = sup {w./ww,www,w“w - }

Remark

Note that € is a (the least) fixed-point of the exponential function Az.w?, that is

€ = w.

Countable and Uncountable Ordinals 12/29



The First Epsilon Ordinal

A description of ¢

The ordinal ¢ is defined by
€0 = sup {w./ww,www,w“w - }

Remark

Note that € is a (the least) fixed-point of the exponential function Az.w?, that is
€ = w.

Question

Is €p a countable ordinal?
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The First Epsilon Ordinal

A description of ¢

The ordinal ¢ is defined by
€0 = sup {w./ww,www,w“w - }

Remark

Note that € is a (the least) fixed-point of the exponential function Az.w?, that is
€ = w.

Question
Is €p a countable ordinal? Yes!
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Fundamental Sequences

Definition
A w-sequence is an infinite sequence of the order-type of the natural numbers.

Definition
Let « be a limit countable ordinal and let (v, ),cn be an increasing w-sequence of ordinals such
that

a=sup {a; | a; € (an)nen }-

The increasing w-sequence (o) ,en is a fundamental sequence for the ordinal «.*

*See, e.g. [Rogl992] and [Rat2006]. Some authors require that the w-sequence be strictly increasing. Other
authors allow non-decreasing w-sequences as fundamental sequences for successor ordinals.
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Fundamental Sequences

Notation

Given a fundamental sequence (a,,),en for «, we define

lim v, := sup { o | @; € {ap)nen }-
neN
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Fundamental Sequences

Notation
Given a fundamental sequence (a,,),en for «, we define

lim o, ==sup {a; | a; € {(an)nen }-
neN

Example

Some fundamental sequences.

w=1im(0,1,2,...), w* = lim (w, w?, w3, ...),
neN neN
w-2=lim(w,w+1,w+2,...), € = lim(w,w‘”,w”w,...).
neN neN

w? =lim(w,w-2,w-3,...),
neN
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Fundamental Sequences

Remark
When working with countable ordinals it is common to use fundamental sequences instead of

the actual ordinals.
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The Countable Ordinals are Non-Denumerable

Theorem
The collection of all countable ordinals is a set.
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The Countable Ordinals are Non-Denumerable

Theorem
The collection of all countable ordinals is a set.

Proof*

1. We define the following propositional functions:

wo(x) == x is a well-ordered set,
ot(x,y) ==y is the order-type of x,
p(z,y) = [wo(z) Aot(z,y)] V [~wo(z) Ay = 0].

2. Using the replacement axiom scheme on P(w x w) and ¢(z,y) we know that

S={y|3z(rePlwxw)Ap(x,y)}is a set.

By Juan Carlos Agudelo-Agudelo, personal communication.
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The Countable Ordinals are Non-Denumerable

Proof (continuation).

3. Since any denumerable ordinal is isomorphic to some well-ordering on w (or to some
subset of w if the ordinal is finite), then any countable ordinal belongs to the set S.
Hence, the collection of the countable ordinals is a set. |
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The Countable Ordinals are Non-Denumerable

Proof (continuation).

3. Since any denumerable ordinal is isomorphic to some well-ordering on w (or to some
subset of w if the ordinal is finite), then any countable ordinal belongs to the set S.
Hence, the collection of the countable ordinals is a set. |

Question
Is the previous proof a constructive proof?
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The Countable Ordinals are Non-Denumerable

Theorem

The set of all ordinals in Cantor’s second class number is non-denumerable.*

Question

Can you think in an one-to-one correspondence between the set of Cantor’s second class number
and the real numbers?

Theorem

The set of the countable ordinals is non-denumerable.

*See, e.g. [Siel965, Theorem 2, p. 370].
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Uncountable Ordinals

Definition
An uncountable ordinal is an ordinal whose cardinality is uncountable.
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Uncountable Ordinals

Definition
An uncountable ordinal is an ordinal whose cardinality is uncountable.

Example
The first uncountable ordinal, denoted by wq, is the supremum of the set of the countable

ordinals.

Countable and Uncountable Ordinals 25/29



Cantor’s n-th Number Class

Definition
Cantor’s first number class are the finite ordinals, his second number class are the ordinals of
cardinal Ng, his third number class are the ordinals of cardinal ¥y, and so on.*

*See, e.g. [Rus1938, § 290].
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Cantor’s n-th Number Class

Definition
Cantor’s first number class are the finite ordinals, his second number class are the ordinals of
cardinal Ng, his third number class are the ordinals of cardinal ¥y, and so on.*

Example
The first uncountable ordinal wy is a 3rd number class.

*See, e.g. [Rus1938, § 290].
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