
Using FFI’s pragmas in Agda
Andrés Eugenio Castaño Cardenas, Universidad EAFIT

I. INTRODUCTION

his document is a brief summary through the using of
the foreign function interface (FFI) pragmas applied to a

specific example, there are 5 types of pragmas a IMPORT,
COMPILED_TYPE, COMPILED_DATA, COMPILED and
recently has been added a new one the COMPILED_EPIC
this is used by the EPIC backend and to give EPIC code for
postulated definitions, though in the present paper we are
going to use the four first mentioned pragmas these ones
compile via Haskell but the COMPILED_EPIC pragma
compiles via C, not Haskell [3].

One of the main motivations of doing a paper like this
borns after the reading of The Power Pi and the section of
relational database. Databases are everywhere. When you
book a flight , order a book, or rent a movie online, all you
are really doing under the hood is querying and updating a
database. For this reason, a programming language must be
able to interface with a database. Most of the time such inter-
face consists of a pair of functions to send a request—as a
simple string containing an SQL query—and to receive a
response—usually in the form of a string or some dynamic
type [4]. So we will use an interface called HDBC to interact
with a database through FFI from Agda to Haskell, the FFI
pragmas mentioned above will let us interact to the Haskell
interface that handle’s the database.

In section II we are going to make a short description
about what is a FFI, and in the sections below we are going
to make some insight with each of the pragmas that were
needed to integrate Agda with Haskell in this work, in sec-
tion VII there is an example in which we applied the pragmas
shown.

II. FOREIGN FUNCTION INTERFACE
A foreign function interface is a mechanism that lets a

program written in a programming language [13] make a call

to some function or use a bunch of services written in other
one. Agda has a foreign function interface for calling Haskell
functions from Agda. Foreign functions are only executed in
compiled programs [2].

III. IMPORT PRAGMA
The first part of writing the program is to identify which

modules are needed for the construction of the code, this
pragma instructs the compiler to generate a Haskell import
statement in the compiled code. For our purpose we import
the libraries needed to interact to a Postgres database, the
f o l l o w i n g : D a t a b a s e . H D B C [6] a n d
Database.HDBC.PostgreSQL [7], HDBC provides an ab-
straction layer between Haskell programs and SQL relational
databases. This lets us write database code once, in Haskell,
and have it work with any number of backend SQL databases
(MySQL, Oracle, PostgreSQL, ODBC-compliant databases,
etc.) [5]. There are more options for interacting with a data-
base from Haskell, like Takusen [8] and HaskellDB [9].

IV. COMPILED_TYPE PRAGMA
The COMPILED_TYPE pragma will help us to define

the types in the HDBC types library, such as Connection,
SqlValue and SqlColDesc, a reminder is that this pragma
only works with types that are postulated in Agda. The syn-
tax of this pragma is:

 {-# COMPILED_TYPE D HsType #-}

The COMPILED_TYPE pragma tells the compiler that
the postulated Agda type D corresponds to the Haskell type
HsType. This information is used when checking the types of
COMPILED functions and constructors [2].

V. COMPILED_DATA PRAGMA
According with the syntax:

{-# COMPILED_DATA D HsD HsC1...HsCn #-}

The COMPILED_DATA pragma tells the compiler that
the Agda datatype D corresponds to the Haskell datatype
HsD and that its constructors should be compiled to the Has-
kell constructors HsC1 ... HsCn. The compiler checks that
the Haskell constructors have the right types and that all con-
structors are covered [2].

1

Abstract—This paper exhibits the power that Agda can have be-
sides all the capability of programming with dependent types, Agda
is a proof assistant, it is an interactive system for writing and
checking proofs [1], that so named interactivity is seen from an
other point of view in this work, the capability of interact with an
Agda program, the option that we used to achieve this goal for
writing interactive programs is the foreign function interface a way
of calling Haskell functions from Agda [2].

Index Terms—Agda,database,FFI,foreign function interface, Has-
kell, HDBC, interactive, PostgreSQL, proof assistant.

T

http://www.haskell.org/haskellwiki/Applications_and_libraries/Database_interfaces/HaskellDB
http://www.haskell.org/haskellwiki/Applications_and_libraries/Database_interfaces/HaskellDB
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.ForeignFunctionInterface#COMPILED
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.ForeignFunctionInterface#COMPILED

VI. COMPILED PRAGMA
The COMPILED pragma is the one we use to seize

some functions of the module Database.HDBC.PostgreSQL
such as the connection, and from Database.HDBC: query,
commit, run and other functions.

According to the syntax:

{-# COMPILED f HsCode #-}

The COMPILED pragma tells the compiler to compile
the postulated function f to the Haskell code HsCode.
HsCode can be an arbitrary Haskell term of the right type.
This is checked by translating the given Agda type of f into a
Haskell type and checking that this is the type of HsCode [2].

VII. DATABASE EXAMPLE
The idea behind this implementation is gain all the fa-

cilities of HDBC interface calling the right functions for the
manipulation of the database [11], first of all for using func-
tions like connectPosgreSQL we need to import the right
modules to start working, Database.HDBC and
Database.HDBC.PostgreSQL

{-# IMPORT Database.HDBC #-}
{-# IMPORT Database.HDBC.PostgreSQL #-}

Once we have done this we can start thinking in which
are the types that we need to get connectPostgreSQL func-
tion up and running, so we have to use another pragma.

postulate
 SqlValue : Set
{ - # C O M P I L E D _ T Y P E S q l V a l u e

 Database.HDBC.SqlValue #-}

Finally for using the PostgreSQL function connect we
need to postulate a function in the Agda side and associate it
with the Haskell throw the compiled pragma.

{-# COMPILED dbconnect Database.HDBC.
 PostgreSQL.connectPostgreSQL #-}

The complete code [12] shows different function calls,
the only thing that is left is to compile the Agda program and
execute the Haskell result.

VIII. CONCLUSION
In some point Agda gain interactivity with the use of the

FFI’s applied to access a PostgreSQL database. The foreign
function interface allows the use of a bunch of functions and
it facility encourage it use, one of the things is that the im-
plementation of database interaction in Agda was simple
approach and it has numerous drawbacks, cause the inter-
face is unsafe in the meaning that there are not static checks
on the queries and it is all too easy to formulate a syntacti-
cally incorrect or semantically incoherent query; an unex-
pected response from the database server results in a runtime
error. There is some work that address this issues in an im-
plementation level [10] that is safe and totally embedded.

Other works sketch how to write a domain-specific embed-
ded language for relational algebra in Agda [4]. One of is-
sues with the implementation of the database example is that
in some points some of the pragmas couldn’t disappear the
level parameters, where they suppose to.

REFERENCES
[1] Agda Intro. May 2011.http://wiki.portal.chalmers.se/Agda/pmwiki.php
[2] Foreign Function Interface. November 2009. http://wiki.portal.chalme
 .se/Agda/pmwiki.php?n=ReferenceManual.ForeignFunctionInterface#
 ToHaskellType
[3] Release notes for Agda 2 version 2.2.10. February 2011. http://wiki.
 portal.chalmers.se/Agda/pmwiki.php?n=Main.Version -2-2-10
[4] Nicolas Oury and Wouter Swierstra, The Power of pi. 2008

http://www.cs.nott.ac.uk/~wss/Publications/ThePowerOfPi.pdf
[5] John Goerzen, Welcome to HDBC, Haskell Database Connectivity.
 September 2010. https://github.com/jgoerzen/hdbc/wiki
[6] hackageDB, The HDBC package. April 2011. http://hackage.Haskell.o
 rg/package/HDBC.
[7] John Goerzen, PostgreSQL driver for HDBC. February 2011.

https://github.com/jgoerzen/hdbc-PostgreSQL
[8] Takusen Making DBMS Access Efficient and Safe. July 2010.

http://projects.Haskell.org/takusen/
[9] HaskellDB. September 2010. http://www.Haskell.org/Haskellwiki/
 Applications_and_libraries/Database_interfaces/HaskellDB
[10] Ulf Norell, Database. September 2009. http://www.cse.chalmers.se
 /~ulfn/code/database/Main.html
[11] Bryan O'Sullivan, Don Stewart, and John Goerzen, Real World Has-

kell. http://book.realworldHaskell.org/read/using-databases.html
[12] Andrés Castaño. Using FFI’s pragmas in Agda. June 2011.

http://www1.eafit.edu.co/asicard/teaching/dtfl-CB0683/projects/andres
-eugenio-castano-cardenas/src.zip

[13] Wi k i p e d i a , F o re i g n f u n c t i o n i n t e r f a c e . M a y 2 0 11 .
http://en.wikipedia.org/wiki/Foreign_function_interface

2

http://wiki.portal
http://wiki.portal
http://wiki
http://wiki
http://www.cs.nott.ac.uk/~wss/Publications
http://www.cs.nott.ac.uk/~wss/Publications
https://github.com/jgoerzen/hdbc/wiki
https://github.com/jgoerzen/hdbc/wiki
http://hackage.haskell.org/
http://hackage.haskell.org/
http://hackage
http://hackage
https://github.com/jgoerzen/hdbc-postgresql
https://github.com/jgoerzen/hdbc-postgresql
http://www.haskell.org/haskellwiki/
http://www.haskell.org/haskellwiki/
http://www.cse.chalmers.se/~ulfn/code
http://www.cse.chalmers.se/~ulfn/code
http://www.cse.chalmers.se/~ulfn/code
http://www.cse.chalmers.se/~ulfn/code
http://book.realworldhaskell.org/read/using-databases.html
http://book.realworldhaskell.org/read/using-databases.html
http://www1.eafit.edu.co/asicard/teaching/dtfl-CB0683/projects/andres-eugenio-castano-cardenas/src.zip
http://www1.eafit.edu.co/asicard/teaching/dtfl-CB0683/projects/andres-eugenio-castano-cardenas/src.zip
http://www1.eafit.edu.co/asicard/teaching/dtfl-CB0683/projects/andres-eugenio-castano-cardenas/src.zip
http://www1.eafit.edu.co/asicard/teaching/dtfl-CB0683/projects/andres-eugenio-castano-cardenas/src.zip

