
Dependently typed functional languages

Andrés Sicard-Ramírez

(Last modification: May 25, 2011)

Examination

Homework 30%
Paper presentation 30%
Project 40%

2

What are dependent types?
Types that depend on element of other types.

3

What is a type?

• A type is a set of values (and operations on them).
• Types as ranges of significance of propositional functions. Let φ(x) be

a (unary) propositional function. The type of φ(x) is the range within
which x must lie if φ(x) is to be a proposition.1

In modern terminology, Rusell’s types are domains of propositional func-
tions.

Example. Let φ(x) be the propositional function ‘x is a prime number’.
Then φ(x) is a proposition only when its argument is a natural number.

φ : N → {False,True}
φ(x) = x is a prime number.

Related reading: R. L. Constable. The triumph of types: Principia
Mathematica’s impact on computer science. Presented at the Principia
Mathematica anniversary symposium, 2010.
1B. Russell. The Principles of Mathematics. W. W. Norton & Company, Inc, 2 edition,

1938.

4

What is a type? (cont.)
• “A type system is a tractable syntactic method for proving the absence

of certain program behaviours by classifying phrases according to the
kinds of values they compute”.2

• A type is an approximation of a dynamic behaviour that can be derived
from the form of an expression.3

2B. C. Pierce. Types and Programming Languages. MIT Press, 2002. p. 1.
3O. Kiselyov and C. Shan. Interpreting types as abstract values. Formosan Summer

School on Logic, Language and Computacion (FLOLAC 2008), 2008.

5

What is a type? (cont.)

• BHK (Brouwer, Heyting, Kolmogorov) interpretation: A type is a set, a
proposition, a problem, a specification.

Type A Term a : A
A is a set a is an element of the set A A ̸= ∅
A is a proposition a is a proof (construction)

of the proposition A
A is true

A is a problem a is a method of solving the
problem A

A is solvable

A is a specification a is a program than meets
the specification A

A is satisfiable

6

Applications of dependent types

• To reduce the semantic gap between programs and their properties
• To carry useful information for programs optimisation
• The propositions-as-types-principle: Computational interpretation of log-

ical constants
• Unified programing logics (programs, specification, satisfaction relation)

7

Dependently typed systems
(See the Wikipedia article on dependent types for a more complete list)

• The ALF-family (Gothenburg - Sweden)
– ALF
– Agda
– Alfa. Graphical interface for Agda
– AgdaLight. Experimental version of Agda
– Agda 2. Based on Martin-Löf type theory. Direct manipulation of

proofs-objects. Backends to Haskell or Epic. Written in Haskell.

8

Dependently typed systems (cont.)

• Cayenne (Gothenburg - Sweden). An Haskell-like language with depen-
dent types. Written in Haskell.

• Coq (INRIA - France). Based on the Calculus of Inductive Construc-
tions. Tactic-based. Extraction of programs to Objective Caml, Haskell
or Scheme. Written in Objective Caml (with a bit of C).

• DML (USA). An extension of ML with a restricted form of dependent
types. Written in Objective Caml.

• Epigram 2 (England). Based on a closed type theory. Direct manipula-
tion of proofs-objects. The language is in development.

• NuPrl (Cornell - USA). Based on Computational Type Theory. Tactic-
based. Written in ML.

9

Dependent types
B(x): Dependent type for x : A

Definition (Dependent product type (Pi types)).∏
x:A

B(x) is the type of functions f with f a : B(a) if a : A.

Note:

If B(x) = B for all x : A, then
∏
x:A

B(x) ≡ A → B.

(Agda notation: (x : A) → B)

10

Dependent types (cont.)
B(x): Dependent type for x : A

Definition (Dependent sum type (Sigma types)).∑
x:A

B(x) is the type of pairs (a, b) with a : A and b : B(a).

Note:

If B(x) = B for all x : A, then
∑
x:A

B(x) ≡ A×B.

11

The propositions-as-types principle
(The Curry-Howard isomorphism)

(The Brouwer - Heyting - Kolmogorov - Schönfinkel - Curry - Meredith -
Kleene - Feys - Gödel - Läuchli - Kreisel - Tait - Lawvere - Howard - de
Bruijn - Scott - Martin-Löf - Girard - Reynolds - Stenlund - Constable -
Coquand - Huet - . . . - isomorphism)4

4M.-H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, vol-
ume 149 of Studies in Logic and the Foundations of Mathematics. Elsevier, 2006, p.
viii.

12

The propositions-as-types principle (cont.)

• A proposition corresponds to the type of its proofs.
• A proposition is true if the corresponding type is non-empty.

Logic Dependently typed λ-calculus
false formula bottom type
true formula unit type
implication function type
conjunction product type
disjunction sum type
universal quantification dependent product type
existential quantification dependent sum type

13

The propositions-as-types principle (cont.)

Logic Dependently typed λ-calculus

⊥ ⊥
⊤ ⊤

A ⊃ B A → B
A ∧B A×B
A ∨B A +B
¬A A → ⊥

∀x.B(x)
∏
x:A

B(x)

∃x.B(x)
∑
x:A

B(x)

14

Reasoning about of programs

A natural language
(the problem)

vv ((

A specification
language

//

((

A programming logic //oo

��

A programming
language

oo

vv

Type theory
(an unified language)

15

Reasoning about of programs (cont.)
Correctness of an program:

• Partial correctness: If the program terminates then its answer is correct
respect to a specification.

• Total correctness = Partial correctness + termination proof.

Two approaches:

• Verification (external logic): The program is defined using a weak spec-
ification and we prove some theorems about it.

• Correct programs for construction (internal logic): The program is de-
fined using a strong specification.

16

Example strong/weak specification
Strong specification for the greatest common divisor

| : N → N → Set -- Divisibility relation

gcd : (m n : N) →
Σ N (λ r → r | m ∧

r | n ∧
((r’ : N) → r’ | m → r’ | n → r ≥ r’))

gcd = ...

17

Example strong/weak specification (cont.)
Weak specification for the greatest common divisor

gcd : N → N → N
gcd = ...

-- Some theorems to be proved

gcd-fst : (m n : N) → gcd m n | m
gcd-fst = ...

gcd-ge : (m n r’ : N) → r’ | m → r’ | n → gcd m n ≥ r’
gcd-ge = ...

18

Limitations of type theory
We want: Dependent types + type checking decidability

Feature: Computations at the level of types

Problem: Non-terminating/partial computations

ntc : N → N
ntc n = ...

thm : ∀ n → ... n ... ≡ ntc n
thm zero = ?
thm (succ n) = ?

19

Limitations of type theory (cont.)
Solution: All functions must be total

Restriction:

• Structural recursion: The recursive calls are only in structurally smaller
elements (Martin-Löf type theory)

• Termination checker (Agda)

Research area: General recursion/partiality in type theory5

Consequence: Type theory is not a Turing-complete language

Discussion: Does it matter?

5Related reading: A. Bove, A. Krauss, and M. Sozeau. Partiality and recursion in
interactive theorem provers. An overview. Accepted for publication at Mathematical
Structures in Computer Science, special issue on DTP 2010, 2012.

20

General recursion: An alternative approach
Combining automatic and interactive proof in first

order theories of combinators

• See slides for the Agda Implementors’ Meeting XIII talk by Ana Bove
and Peter Dybjer (wiki.portal.chalmers.se/agda/pmwiki.php?n=
AIMXIII.ProgramEtc).

• See code related to the above talk (www1.eafit.edu.co/asicard/code/
fotc/).

21

