
CM0889 Analysis of Algorithms
Introduction to Algorithms

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2020-2



Administrative Information

Course web page
http://www1.eafit.edu.co/asr/courses/cm0889-analysis-of-algorithms/

Textbook, evaluation, programming labs, course’s repository, etc.
See course web page.

Introduction to Algorithms 2/41

http://www1.eafit.edu.co/asr/courses/cm0889-analysis-of-algorithms/


Preliminaries

Conventions
The number assigned to chapters, examples, exercises, figures, sections, or theorems on
these slides correspond to the numbers assigned in the textbook [Skiena 2012].

The source code examples are in course’s repository.

Introduction to Algorithms 3/41



From the Textbook

Designing correct, efficient, and implementable algorithms for real-world problems re-
quires access to two distinct bodies of knowledge:

Techniques
Good algorithm designers understand several fundamental algorithm design tech-
niques.

Resources
Good algorithm designers stand on the shoulders of giants.

[Preface, p. v]

Introduction to Algorithms 4/41



From Problems to Programs via Algorithms

Question
Can be any problem solved by a program?

No!
Limitations when specifying the problem (no precise specification)
Computation limitations (theoretical or practical)
Ethical considerations and regulations

Introduction to Algorithms 5/41



From Problems to Programs via Algorithms

Question
Can be any problem solved by a program?

No!
Limitations when specifying the problem (no precise specification)
Computation limitations (theoretical or practical)
Ethical considerations and regulations

Introduction to Algorithms 6/41



From Problems to Programs via Algorithms

About solving problems

Half the battle is knowing what problem to solve. [Aho, Hopcroft and Ullman 1985,
p. 1]

Perhaps the single most important design technique is modeling, the art of abstract-
ing a messy real-world application into a clean problem suitable for algorithmic at-
tack. [p. v]

Introduction to Algorithms 7/41



From Problems to Programs via Algorithms

About solving problems

Half the battle is knowing what problem to solve. [Aho, Hopcroft and Ullman 1985,
p. 1]

Perhaps the single most important design technique is modeling, the art of abstract-
ing a messy real-world application into a clean problem suitable for algorithmic at-
tack. [p. v]

Introduction to Algorithms 8/41



From Problems to Programs via Algorithms

Steps when writing a computer program to solve a problem

Problem formulation and specification
Design of the solution (algorithm)
Implementation
Testing
Documentation
Evaluation
Maintenance

In software engineering the above steps are part of the software development life cycle.

Introduction to Algorithms 9/41



From Problems to Programs via Algorithms

Definition (common and informal)
An algorithm, which is a finite sequence of instructions, each of which has a clear
meaning and can be performed with a finite amount of effort in a finite length of
time. [Aho, Hopcroft and Ullman 1985, p. 1]

Question
Are missing the computers on the above definition of algorithm? No!

Question
What is an instruction?

Remark
Any informal definition of algorithm necessary will be imprecise (but the above definition is
enough for our course).

Introduction to Algorithms 10/41



From Problems to Programs via Algorithms

Definition (common and informal)
An algorithm, which is a finite sequence of instructions, each of which has a clear
meaning and can be performed with a finite amount of effort in a finite length of
time. [Aho, Hopcroft and Ullman 1985, p. 1]

Question
Are missing the computers on the above definition of algorithm?

No!

Question
What is an instruction?

Remark
Any informal definition of algorithm necessary will be imprecise (but the above definition is
enough for our course).

Introduction to Algorithms 11/41



From Problems to Programs via Algorithms

Definition (common and informal)
An algorithm, which is a finite sequence of instructions, each of which has a clear
meaning and can be performed with a finite amount of effort in a finite length of
time. [Aho, Hopcroft and Ullman 1985, p. 1]

Question
Are missing the computers on the above definition of algorithm? No!

Question
What is an instruction?

Remark
Any informal definition of algorithm necessary will be imprecise (but the above definition is
enough for our course).

Introduction to Algorithms 12/41



From Problems to Programs via Algorithms

Definition (common and informal)
An algorithm, which is a finite sequence of instructions, each of which has a clear
meaning and can be performed with a finite amount of effort in a finite length of
time. [Aho, Hopcroft and Ullman 1985, p. 1]

Question
Are missing the computers on the above definition of algorithm? No!

Question
What is an instruction?

Remark
Any informal definition of algorithm necessary will be imprecise (but the above definition is
enough for our course).

Introduction to Algorithms 13/41



From Problems to Programs via Algorithms

Definition (common and informal)
An algorithm, which is a finite sequence of instructions, each of which has a clear
meaning and can be performed with a finite amount of effort in a finite length of
time. [Aho, Hopcroft and Ullman 1985, p. 1]

Question
Are missing the computers on the above definition of algorithm? No!

Question
What is an instruction?

Remark
Any informal definition of algorithm necessary will be imprecise (but the above definition is
enough for our course).

Introduction to Algorithms 14/41



From Problems to Programs via Algorithms

Definition (common and informal)
An algorithm, which is a finite sequence of instructions, each of which has a clear
meaning and can be performed with a finite amount of effort in a finite length of
time. [Aho, Hopcroft and Ullman 1985, p. 1]

Discussion
Is any computer program the implementation of some algorithm?

Introduction to Algorithms 15/41



From Problems to Programs via Algorithms

Definition (common and informal)
An algorithm, which is a finite sequence of instructions, each of which has a clear
meaning and can be performed with a finite amount of effort in a finite length of
time. [Aho, Hopcroft and Ullman 1985, p. 1]

Discussion
Is any computer program the implementation of some algorithm?

Introduction to Algorithms 16/41



From Problems to Programs via Algorithms

Paradigms of programming
Imperative/object-oriented: Describe computation in terms of state-transforming operations
such as assignment. Programming is done with statements.

Logic: Predicate calculus as a programming language. Programming is done with sentences.

Functional: Describe computation in terms of (mathematical) functions. Programming is done
with expressions.

Examples
Imperative/OO: C, C++, Java, Python
Logic: CLP(R), Prolog
Functional: Erlang, Haskell, ML

Introduction to Algorithms 17/41



From Problems to Programs via Algorithms

Discussion
Does the algorithm for solving a problem depend of the programming language used for imple-
menting it?

Introduction to Algorithms 18/41



Example: Sorting

Introduction
A sorting algorithm is an algorithm that puts elements of list according to some linear (total)
order. Sorting algorithms are fundamental in Computer Science.

Sorting specification
Problem: Sorting
Input: A sequence of n keys (a1, a2, . . . , an).
Output: A permutation (reordering) (a′

1, a′
2, . . . , a′

n) of the input sequence such that a′
1 ≤

a′
2 ≤ · · · ≤ a′

n.

Introduction to Algorithms 19/41



Example: Sorting

Introduction
A sorting algorithm is an algorithm that puts elements of list according to some linear (total)
order. Sorting algorithms are fundamental in Computer Science.

Sorting specification
Problem: Sorting
Input: A sequence of n keys (a1, a2, . . . , an).
Output: A permutation (reordering) (a′

1, a′
2, . . . , a′

n) of the input sequence such that a′
1 ≤

a′
2 ≤ · · · ≤ a′

n.

Introduction to Algorithms 20/41



Example: Sorting

Example
Input: (154, 245, 568, 324, 654, 324)
Output: (154, 245, 324, 324, 568, 654)

Example
Input: (Mike, Bob, Sam, Jill, Jan)
Output (lexicographic order): (Bob, Jan, Jill, Mike, Sam)
Output (shortlex order): (Bob, Jan, Sam, Jill, Mike)

Introduction to Algorithms 21/41



Example: Sorting

Example
Input: (154, 245, 568, 324, 654, 324)
Output: (154, 245, 324, 324, 568, 654)

Example
Input: (Mike, Bob, Sam, Jill, Jan)
Output (lexicographic order): (Bob, Jan, Jill, Mike, Sam)
Output (shortlex order): (Bob, Jan, Sam, Jill, Mike)

Introduction to Algorithms 22/41



Example: Sorting

An algorithm: Insertion sort
Insertion sort is a method for sorting that starts with a single element (thus forming a
trivially sorted list) and then incrementally inserts the remaining elements so that the
list stays sorted. [p. 3]

See simulation at
https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/
visualize/.

See implementation and tests in sorting-test.c.

Introduction to Algorithms 23/41

https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/visualize/
https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/visualize/


Example: Sorting

An algorithm: Insertion sort
Insertion sort is a method for sorting that starts with a single element (thus forming a
trivially sorted list) and then incrementally inserts the remaining elements so that the
list stays sorted. [p. 3]

See simulation at
https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/
visualize/.

See implementation and tests in sorting-test.c.

Introduction to Algorithms 24/41

https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/visualize/
https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/visualize/


Example: Sorting

An algorithm: Insertion sort
Insertion sort is a method for sorting that starts with a single element (thus forming a
trivially sorted list) and then incrementally inserts the remaining elements so that the
list stays sorted. [p. 3]

See simulation at
https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/
visualize/.

See implementation and tests in sorting-test.c.

Introduction to Algorithms 25/41

https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/visualize/
https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/visualize/


Example: Robot Tour Optimisation

Specification
Problem: Robot Tour Optimisation
Input: A set P of n points in the plane.
Output: The shortest cycle tour that visits each point in the set P .

See Skiena’s lecture slides: Introduction to Algorithms

Introduction to Algorithms 26/41



Example: Robot Tour Optimisation

Remarks about the closest-pair heuristic
In a vertex chain (v1, v2, ..., vn), the vertices v1 and vn are the endpoints.

A single vertex chain is a vertex chain (v) with only a vertex.

In the nearest-neighbour heuristic, the algorithm only looks at the neighbours of the current
vertex. In the closest-pair heuristic, the algorithm looks in all the neighbours of the partial
vertex chain.

‘The description states that every vertex always belongs either to a “single-vertex chain” (i.e.,
it’s alone) or it belongs to one other chain; a vertex can only belong to one chain. The algorithm
says at each step you select every possible pair of two vertices which are each an endpoint of
the respective chain they belong to, and don’t already belong to the same chain. Sometimes
they’ll be singletons; sometimes one or both will already belong to a non-trivial chain, so you’ll
join two chains.’∗

∗From https://stackoverflow.com/a/7216814/1709190.
Introduction to Algorithms 27/41

https://stackoverflow.com/a/7216814/1709190


Example: Selecting the Right Jobs

Specification
Problem: Movie Scheduling Problem
Input: A set I of n intervals on the line.
Output: The largest subset of mutually non-overlapping intervals which can be selected

from I.

See Skiena’s lecture slides: Introduction to Algorithms

Introduction to Algorithms 28/41



From the Previous Examples

Take-Home Lesson
There is a fundamental difference between algorithms, which always produce a correct
result, and heuristics, which may usually do a good job but without providing any
guarantee. [p. 9]

Take-Home Lesson
Reasonable-looking algorithms can easily be incorrect. Algorithm correctness is a
property that must be carefully demonstrated. [p. 11]

Introduction to Algorithms 29/41



From the Previous Examples

Take-Home Lesson
There is a fundamental difference between algorithms, which always produce a correct
result, and heuristics, which may usually do a good job but without providing any
guarantee. [p. 9]

Take-Home Lesson
Reasonable-looking algorithms can easily be incorrect. Algorithm correctness is a
property that must be carefully demonstrated. [p. 11]

Introduction to Algorithms 30/41



Reasoning about the Correctness of Algorithms

Prerequisites
A well-specified problem (input/output correspondence):
(i) The set of all allowed input instances.
(ii) The required properties of the problem’s output.

Correctness of an algorithm
Partial correctness: If an answer is returned it will be correct

Total correctness: Partial correctness + termination

Remark
The (mathematical) proof of the (partial or total) correctness of an algorithm can be a non-easy
task.

Introduction to Algorithms 31/41



Reasoning about the Correctness of Algorithms

Prerequisites
A well-specified problem (input/output correspondence):
(i) The set of all allowed input instances.
(ii) The required properties of the problem’s output.

Correctness of an algorithm
Partial correctness: If an answer is returned it will be correct

Total correctness: Partial correctness + termination

Remark
The (mathematical) proof of the (partial or total) correctness of an algorithm can be a non-easy
task.

Introduction to Algorithms 32/41



Reasoning about the Correctness of Algorithms

Prerequisites
A well-specified problem (input/output correspondence):
(i) The set of all allowed input instances.
(ii) The required properties of the problem’s output.

Correctness of an algorithm
Partial correctness: If an answer is returned it will be correct

Total correctness: Partial correctness + termination

Remark
The (mathematical) proof of the (partial or total) correctness of an algorithm can be a non-easy
task.

Introduction to Algorithms 33/41



Reasoning about the Correctness of Algorithms

Remark
Reasoning about the correctness/verification of algorithms is different to the correct-
ness/verification of programs.

Remark
We talk about formal verification when the underlying proof is machine-checked. For a current
survey, see [Nipkow, Eberl and Haslbeck 2020].

Introduction to Algorithms 34/41



Reasoning about the Correctness of Algorithms

Remark
Reasoning about the correctness/verification of algorithms is different to the correct-
ness/verification of programs.

Remark
We talk about formal verification when the underlying proof is machine-checked. For a current
survey, see [Nipkow, Eberl and Haslbeck 2020].

Introduction to Algorithms 35/41



Reasoning about the Correctness of Algorithms

Demonstrating incorrectness
A counter-example is a direct way to prove the incorrectness of a heuristic. Think about
small/extreme/related-to-the-decision-criteria examples. . .

Introduction to Algorithms 36/41



Reasoning about the Correctness of Algorithms

Induction and recursion
To every recursively defined set there is a correspond induction principle.

Example
Whiteboard.

Introduction to Algorithms 37/41



Reasoning about the Correctness of Algorithms

Example
Prove the correctness of the following recursive algorithm for adding one to a natural number:

increment(n : N)
1 if n == 0
2 return 1
3 else
4 if (n mod 2 == 1)
5 return (2 · increment(⌊ n/2 ⌋))
6 else return (n + 1)

Introduction to Algorithms 38/41



Reasoning about the Correctness of Algorithms

Proof by strong induction
Let P (n): increment(n) = n + 1.

We need to prove that (∀n ∈ N)P (n).
(i) Basis case P (0).

Since increment(0) = 1 by line 2, then P (0) holds.

(ii) Inductive step (P (1) ∧ P (2) ∧ · · · ∧ P (k − 1)) → P (k).

a) Case: k − 1 is odd

Since k is even and increment(k) = k + 1 by line 6, then P (k) holds.

Introduction to Algorithms 39/41



Reasoning about the Correctness of Algorithms

Proof by strong induction (continuation)
ii) Inductive step (P (1) ∧ P (2) ∧ · · · ∧ P (k − 1)) → P (k).

b) Case: k − 1 is even

The statement (P (1) ∧ P (2) ∧ · · · ∧ P (k − 1)) → P (k) holds because

increment(k)
= increment(2m + 1) (k is odd)
= 2 · increment(⌊ (2m + 1)/2 ⌋) (line 5)
= 2 · increment(⌊ m + 1/2 ⌋) (algebra)
= 2 · increment(m) (algebra)
= 2 · (m + 1) (m < k and IH)
= k + 1 (algebra)

Introduction to Algorithms 40/41



References

Aho, Alfred V., Hopcroft, John E. and Ullman, Jeffrey D. [1983] (1985). Data Structures and
Algorithms. Reprinted with corrections. Addison-Wesley (cit. on pp. 7, 8, 10–16).
Nipkow, Tobias, Eberl, Manuel and Haslbeck, Maximilian P. L. (2020). Verified Textbook Al-
gorithms. A Biased Survey. In: Automated Technology for Verification and Analysis (ATVA 2020).
Ed. by Hung, Dang Van and Sokolsky, Oleg. Lecture Notes in Computer Science. To appear.
Springer (cit. on pp. 34, 35).
Skiena, Steven S. [1997] (2012). The Algorithm Design Manual. 2nd ed. Corrected printing.
Springer. doi: 10.1007/978-1-84800-070-4 (cit. on p. 3).

Introduction to Algorithms 41/41

https://doi.org/10.1007/978-1-84800-070-4

	Introduction to Algorithms
	From Problems to Programs via Algorithms
	Some Examples
	Reasoning about the Correctness of Algorithms
	References


