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Induction

Principle of Mathematical Induction
Let P (n) be a property on natural numbers n, and let a be a fixed natural number.

If
(i) P (a) is true and
(ii) for every natural number k ≥ a, if P (k) is true then P (k + 1) is true,
then
(iii) P (n) is true for all natural numbers n ≥ a.
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Induction

Principle of Strong Induction
Let P (n) be a property on natural numbers n, and let a be a fixed natural number.

If
(i) P (a) is true and
(ii) for every natural number k ≥ a, if P (i) is true for a ≤ i ≤ k, then P (k + 1) is true,
then
(iii) P (n) is true for all natural numbers n ≥ a.

Remark
Other names: Principle of complete induction and principle of course-of-values induction.
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Induction

Theorem
The principle of mathematical induction and the principle of strong induction are equivalents.
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Floor and Ceiling Functions

Definition
The floor function is defined by

⌊ · ⌋ : R → Z
⌊ x ⌋ := largest integer less than or equal to x.

Example

⌊ 42 ⌋ = 42,

⌊ 5.42 ⌋ = 5,

⌊ −5.52 ⌋ = −6.
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Floor and Ceiling Functions

Definition
The ceiling function is defined by

⌈ · ⌉ : R → Z
⌈ x ⌉ := smallest integer greater than or equal to x.

Example

⌈ 42 ⌉ = 42,

⌈ 5.42 ⌉ = 6,

⌈ −5.52 ⌉ = −5.
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Logarithms

Definition
For any fixed real number b > 1,

logb : R+ → R
logb x = y iff by = x.

Notation
lg x: Logarithm on base 2
ln x: Logarithm on base e
log x: Logarithm on base 10
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Logarithms

Logarithmic functions lg x, ln x, log x and log1.8 x
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Logarithms

Properties
For any fixed real number b > 1, for all x, y ∈ R+, and for all z ∈ R:

logb(xy) = logb x + logb y,

logb(x/y) = logb x − logb y,

logb(xz) = z logb x.
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Logarithms

Properties
For all real numbers a and b greater than 1 and for all x ∈ R+:

logb x = loga x

loga b
.
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Logarithms

Properties
For all real numbers a and b greater than 1, for all x ∈ R+, if a < b then

loga x > logb x.

Appendix 12/16



Summations

Definition
Let a1, a2, . . . , an be a sequence of numbers, where n is a positive integer. Recall the recursive
definition of the summation notation:

1∑
k=1

ak := a1,

n∑
k=1

ak :=
(

n−1∑
k=1

ak

)
+ an

= a1 + a2 + · · · + an−1 + an.
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Summations

Properties

n∑
k=1

(ak + bk) =
n∑

k=1
ak +

n∑
k=1

bk (additive property),

n∑
k=1

cak = c
n∑

k=1
ak (homogeneous property),

n∑
k=1

(αak + βbk) = α
n∑

k=1
ak + β

n∑
k=1

bk (linearity property).
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Summations

Properties

n∑
k=1

f(n) = nf(n),

n∑
k=1

ak =
i∑

k=1
ak +

n∑
k=i+1

ak.
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Summations

Properties

n∑
k=1

k = n(n + 1)
2 ,

n∑
k=1

k2 = n(n + 1)(2n + 1)
6 ,

n∑
k=1

k3 =
(

n(n + 1)
2

)2
.
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