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Preliminaries

Conventions
The number assigned to chapters, examples, exercises, figures, sections, or theorems on
these slides correspond to the numbers assigned in the textbook [Skiena 2012].

The source code examples are in course’s repository.
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Introduction

Definition
The computational complexity of an algorithm is the amount of resources (e.g. time and
space) required to execute it.

Definition
The analysis of algorithms—term coined by Donald Knuth—is the study of the computational
complexity of algorithms.

Convention
For us ‘the complexity of an algorithm’ means the time computational complexity of the al-
gorithm.
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Introduction

Two abstractions
For the analysis of algorithms we required two abstractions:

(i) Where do the algorithms run? In a theoretical computer, i.e., we are interested in machine-
independent algorithms.

(ii) Which complexity are we interested? We are interested in asymptotic complexity, i.e., we
are interested in the behaviour of the algorithm for large values of the input.

Algorithm Analysis 5/47



Introduction

Two abstractions
For the analysis of algorithms we required two abstractions:

(i) Where do the algorithms run? In a theoretical computer, i.e., we are interested in machine-
independent algorithms.

(ii) Which complexity are we interested? We are interested in asymptotic complexity, i.e., we
are interested in the behaviour of the algorithm for large values of the input.

Algorithm Analysis 6/47



The RAM Model of Computation

See Skiena’s lecture slides: Asymptotic Notation
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Best, Worst and Average-Case Complexity

The running time function
If the running time of an algorithm depends of the input then it usually means it depends of the
size of the input.

So, we shall use a function
T (n) : N → R≥0

which will denote the running time of an algorithm on inputs of size n.
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Best, Worst and Average-Case Complexity

Example
For a sorting algorithm the size of the input is the number of elements to sort.
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Best, Worst and Average-Case Complexity

There complexity functions
Given an input of size n we can think in three complexity functions: best-case complexity, worst-
case complexity and average-case complexity.

See Skiena’s lecture slides: Asymptotic Notation
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Asymptotic Notations: Big O

Definition
Let g : N → R≥0 be a function. We define the set of functions big O of g(n), denoted
by O(g(n)), by

O(g(n)) := { f : N → R≥0 | there exist positive constants c ∈ R+

and n0 ∈ Z+ such that f(n) ≤ cg(n)
for all n ≥ n0 }.

Notation
Both ‘f(n) = O(g(n))’ and ‘f(n) is O(g(n))’ mean that f(n) ∈ O(g(n)).

Algorithm Analysis 11/47



Asymptotic Notations: Big O

Definition
Let g : N → R≥0 be a function. We define the set of functions big O of g(n), denoted
by O(g(n)), by

O(g(n)) := { f : N → R≥0 | there exist positive constants c ∈ R+

and n0 ∈ Z+ such that f(n) ≤ cg(n)
for all n ≥ n0 }.

Notation
Both ‘f(n) = O(g(n))’ and ‘f(n) is O(g(n))’ mean that f(n) ∈ O(g(n)).

Algorithm Analysis 12/47



Asymptotic Notations: Big O

Definition (continuation)
If f(n) ∈ O(g(n)) then function g(n) is an upper bound on the growth rate of the function f(n).∗

(b)

n
n0

f .n/ D O.g.n//

f .n/

cg.n/

∗Figure source: Cormen, Leiserson, Rivest and Stein [2009, Fig. 3.1b].
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Asymptotic Notations: Big O

Example
Let T (n) = 3n2 − 100n + 6. The function T (n) is O(n2) because choosing n0 = 1 and c = 3
we have that

3n2 − 100n + 6 ≤ cn2, for all n ≥ n0,

that is,
3n2 − 100n + 6 ≤ 3n2, for all n ≥ 1.
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Asymptotic Notations: Big O

Exercise
Let T (n) = (n + 1)2. To prove that T (n) ∈ O(n2). Hint: Choose n0 = 1 and c = 4.

Question
If T (n) ∈ O(n2) then T (n) ∈ O(n3)? What about O(n4)?
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Asymptotic Notations: Big O

Example
Let T (n) = 6n2. The function T (n) is not O(n) because

6n2 > cn, when n > c.
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Asymptotic Notations: Big O

Theorem
Let d be a natural number and T (n) a polynomial function of degree d, that is,

T : N → R

T (n) =
d∑

i=0
cin

i, with ci ∈ R and cd ̸= 0.

If cd > 0 then T (n) ∈ O(nd).∗

Example
T (n) = 42n3 + 1523n2 + 45728n is O(n3).

∗See, e.g. [Cormen, Leiserson, Rivest and Stein 2009].
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Asymptotic Notations: Big O

Example
Since any constant is a polynomial of degree 0, any constant function is O(n0), i.e. O(1).

Remark
Note the missing variable in O(1).∗

∗We could use the λ-calculus notation, i.e. O(λn.1).
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Asymptotic Notations: Big O

Example
Let T (n) = lg(7n2 + 4n). To prove that:
(i) T (n) is O(lg n).
(ii) T (n) is O(logb n), for any real number b > 1.
Adapted from [Vrajitoru and Knight 2014, Example 3.3.2.(c)].
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Asymptotic Notations: Big O

Proof
i) Since

lg(7n2 + 4n) < lg(7n2 + 4n2)
= lg(11n2)
= lg 11 + 2 lg n

< lg n + 2 lg n, for n ≥ 12
= 3 lg n

then T (n) is O(lg n) by choosing n0 = 12 and c = 3.
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Asymptotic Notations: Big O

Proof (continuation)
(ii) Case b < 2

Since lg n < logb n then T (n) is O(logb n) because it is O(lg n).
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Asymptotic Notations: Big O

Proof (continuation)
(ii) Case b > 2

Because logb n < lg n we can not use the fact that T (n) is O(lg n) like in the case b < 2.

Now, since for n ≥ 12,

lg(7n2 + 4n) ≤ 3 lg n and lg n = lg b · logb n,

then T (n) is O(logb n) by choosing n0 = 12 and c = 3 · ⌈lg b⌉.
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Asymptotic Notations: Big Ω

Definition
Let g : N → R≥0 be a function. We define the set of functions big Ω of g(n), denoted
by Ω(g(n)), by

Ω(g(n)) := { f : N → R≥0 | there exist positive constants c ∈ R+

and n0 ∈ Z+ such that f(n) ≥ cg(n)
for all n ≥ n0 }.

Notation
Both ‘f(n) = Ω(g(n))’ and ‘f(n) is Ω(g(n))’ mean that f(n) ∈ Ω(g(n)).
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Asymptotic Notations: Big Ω

Definition (continuation)
If f(n) ∈ Ω(g(n)) then function g(n) is a lower bound on the growth rate of the function f(n).∗

(c)

n
n0

f .n/ D �.g.n//

f .n/

cg.n/

∗Figure source: Cormen, Leiserson, Rivest and Stein [2009, Fig. 3.1c].
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Asymptotic Notations: Big Θ

Definition
Let g : N → R≥0 be a function. We define the set of functions big Θ of g(n), denoted
by Θ(g(n)), by

Θ(g(n)) := { f : N → R≥0 | there exist positive constants c1, c2 ∈ R+

and n0 ∈ Z+ such that
c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0 }.

Notation
Both ‘f(n) = Θ(g(n))’ and ‘f(n) is Θ(g(n))’ mean that f(n) ∈ Θ(g(n)).
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Asymptotic Notations: Big Θ

Definition (continuation)
If f(n) ∈ Θ(g(n)) then function g(n) is a lower bound and an upper bound on the growth rate
of the function f(n).∗

n
n0

f .n/ D ‚.g.n//

f .n/

c1g.n/

c2g.n/

∗Figure source: Cormen, Leiserson, Rivest and Stein [2009, Fig. 3.1a].
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The Tyranny of Growth Rate

Growing rates of some functions
Each operation takes one nanosecond (109 seconds). Figure 2.4 in the textbook.

n f(n) lgn n n lgn n2 2n n!
10 0.003 µs 0.01 µs 0.033 µs 0.1 µs 1 µs 3.63 ms
20 0.004 µs 0.02 µs 0.086 µs 0.4 µs 1 ms 77.1 years
30 0.005 µs 0.03 µs 0.147 µs 0.9 µs 1 sec 8.4 × 1015 yrs
40 0.005 µs 0.04 µs 0.213 µs 1.6 µs 18.3 min
50 0.006 µs 0.05 µs 0.282 µs 2.5 µs 13 days

100 0.007 µs 0.1 µs 0.644 µs 10 µs 4 × 1013 yrs
1,000 0.010 µs 1.00 µs 9.966 µs 1 ms
10,000 0.013 µs 10 µs 130 µs 100 ms
100,000 0.017 µs 0.10 ms 1.67 ms 10 sec
1,000,000 0.020 µs 1 ms 19.93 ms 16.7 min
10,000,000 0.023 µs 0.01 sec 0.23 sec 1.16 days
100,000,000 0.027 µs 0.10 sec 2.66 sec 115.7 days
1,000,000,000 0.030 µs 1 sec 29.90 sec 31.7 years
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The Tyranny of Growth Rate

Supercomputers
Machines from: www.top500.org (last updated: September 2020)
PetaFLOP (PFLOP): 1015 floating-point operations per second

Date Machine PFLOPs
2020-06 Fugaku 415.53
2019-06 Summit 148.60
2018-11 Summit 143.50
2018-06 Summit 122.30
2016-06 Sunway TaihuLight 93.01
2013-06 Tianhe-2 33.86
2012-06 Blue Gene/Q 16.32
2011-06 K computer 8.16
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The Tyranny of Growth Rate

Example (3-SAT problem)
A literal is an atomic formula (propositional variable) or the negation of an atomic formula.

A (propositional logic) formula F is in conjunctive normal form iff

F has the form F1 ∧ · · · ∧ Fn,

where each F1, . . . , Fn is a disjunction of literals.

3-SAT problem: To determine the satisfiability of a propositional formula in conjunctive normal
form where each disjunction of literals is limited to at most three literals.

The problem was proposed in Karp’s 21 NP-complete problems [Karp 1972].
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The Tyranny of Growth Rate

Improvements on the time complexity of 3-SAT deterministic algorithmic ∗

O(1.32793n) Liu [2018]
O(1.3303n) Makino, Tamaki and Yamamoto [2011, 2013]
O(1.3334n) Moser and Scheder [2011]
O(1.439n) Kutzkov and Scheder [2010]
O(1.465n) Scheder [2008]
O(1.473n) Brueggemann and Kern [2004]
O(1.481n) Dantsin, Goerdt, Hirsch, Kannan, Kleinberg, Papadimitriou, Raghavan and

Schöning [2002]

(continued on next slide)
∗Main sources: Hertli [2011, 2015]. Last updated: July 2020.
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The Tyranny of Growth Rate

Improvements on the time complexity of 3-SAT deterministic algorithmic (continuation)

O(1.497n) Schiermeyer [1996]
O(1.505n) Kullmann [1999]
O(1.6181n) Monien and Speckenmeyer [1979, 1985]
O(2n) Brute-force search
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The Tyranny of Growth Rate

3-SAT simulation
Running 3-SAT times on different supercomputers using the faster deterministic algorithm,
i.e. T (1.32793n).

Date Machine PFLOPs n = 150 n = 200 n = 400
2020-06 Fugaku 415.53 7.2 sec 120.2 days 1.4 × 1024 yrs
2019-06 Summit 148.60 20.1 sec 336.1 days 4.0 × 1024 yrs
2018-11 Summit 143.50 20.8 sec 348.1 days 4.1 × 1024 yrs
2018-06 Summit 122.30 24.5 sec 1.1 yrs 4.8 × 1024 yrs
2016-06 Sunway

TaihuLight
93.01 32.2 sec 1.5 yrs 6.4 × 1024 yrs

2013-06 Tianhe-2 33.86 1.5 min 4.1 yrs 1.7 × 1025 yrs
2012-06 Blue

Gene/Q
16.32 3.1 min 8.4 yrs 3.6 × 1025 yrs

2011-06 K computer 8.16 6.1 min 16.8 yrs 7.3 × 1025 yrs
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The Tyranny of Growth Rate

3-SAT simulation
Running 3-SAT times for different deterministic algorithms using the faster supercomputer,
i.e. 415.53 PFLOPs.

Complexity n = 150 n = 200 n = 400
T (1.32793n) 7.2 sec 120.2 days 1.4 × 1024 yrs
T (1.3303n) 9.4 sec 172.0 days 2.9 × 1024 yrs
T (1.3334n) 13.3 sec 273.5 days 7.3 × 1024 yrs
T (1.439n) 14.2 days 3.1 × 106 yrs 1.3 × 1038 yrs
T (1.465n) 209.1 days 1.1 × 108 yrs 1.7 × 104 yrs
T (2n) 1.1 × 1020 yrs 1.3 × 1035 yrs 2.0 × 1095 yrs
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Dominance Relations

Example (informal)
See
http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/.
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Dominance Relations

Definition
Let f and g two functions. The function f dominates the function g, denoted f ≫ g, iff g(n)
becomes insignificant relative to f(n) as n approaches infinity, that is, limn→∞ g(n)/f(n) = 0.

Example

n! ≫ 2n ≫ n3 ≫ n2 ≫ n log n ≫ n ≫ log n ≫ 1.
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