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Preliminaries

“Textbook”
“Lecture Notes on What is (Constructive) Logic?” (Pfenning 2023).
Other reference
Constructivism in Mathematics. An Introduction. Volume I (Troelstra and van Dalen
1988).

Constructivism 2/35



The Crisis in the Foundations of Mathematics
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The Crisis in the Foundations of Mathematics

Paradoxes ⇒ Crisis ⇒


Logicism (Russell and Whitehead)
Formalism (Hilbert)
Intuitionism (Brouwer)
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The Crisis in the Foundations of Mathematics

Logicism (Russell and Whitehead)

“The logicistic thesis is that mathematics is a branch of logic. The mathematical
notions are to be defined in terms of the logical notions. The theorems of math-
ematics are to be proved as theorems of logic.” (Kleene [1952] 1974, p. 43)
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The Crisis in the Foundations of Mathematics

Formalism (Hilbert)

“Classical mathematics shall be formulated as a formal axiomatic theory, and
this theory shall be proved to be consistent, i.e. free from contradiction.” (Kleene
[1952] 1974, p. 53)
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The Crisis in the Foundations of Mathematics

Intuitionism (Brouwer)

“Intuitionism is based on the idea that mathematics is a creation of the mind.
The truth of a mathematical statement can only be conceived via a mental con-
struction that proves it to be true.” (Iemhoff 2024)
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The Crisis in the Foundations of Mathematics

Conceptions of the infinite

(i) Non-Intuitionism
“The infinite is treated as actual or completed or extended or existential. An
infinite set is regarded as existing as a completed totality, prior to or independently
of any human process of generation or construction, and as though it could be
spread out completely for our inspection.” (Kleene [1952] 1974, p. 48)

(ii) Intuitionism
“The infinite is treated only as potential or becoming or constructive. The recog-
nition of this distinction, in the case of infinite magnitudes, goesback to Gauss,
who in 1831 wrote, ‘I protest . . . against the use of an infinite magnitude as
something completed, which is never permissiblein mathematics.’ (Werke VIII
p. 216.)” (Kleene [1952] 1974, p. 48)
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Constructivism

Some differences with classical logic

(i) Rejection of the principle of exclude middle (tertium non datur).

⊢ A ∨ ¬A, for all formula A.

(ii) A proof of an existential formula ∃x.A(x) must include a witness t such as A(t) is
true.

(continued on next slide)
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Constructivism

Some differences with classical logic

(iii) Rejection of proofs by contradiction

Proof by contradiction
(or reductio ad absurdum)

[¬A]
...
⊥
A

Proof of negation (Bauer 2017)

[A]
...
⊥

¬A
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Non-Constructive Proofs

Example
To prove that there are irrational numbers r, s ∈ R such that rs is rational.

Proof (using the principle of exclude middle)
(whiteboard)

Question
Could you give me two irrational numbers r, s such that rs is rational?
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Non-Constructive Proofs

Martin Aigner · Günter M. Ziegler

Proofs from THE BOOK
     Sixth Edition

Constructivism 15/35



Non-Constructive Proofs

Example
To prove that there are an infinity number of primes.

Proof (by contradiction)

“Euclid’s proof. For any finite set {p1, . . . , pr} of primes, consider the number
n = p1p2 · · · pr + 1. This n has a prime divisor p. But p is not one of the pi:
otherwise p would be a divisor of n and of the product p1p2 · · · pr, and thus
also of the difference n − p1p2 · · · pr = 1, which is impossible. So a finite set
{p1, . . . , pr} cannot be the collection of all prime numbers.” (Aigner and Ziegler
[1998] 2018, p. 3)

Question
Could you give me an infinite list of primes?
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Non-Constructive Proofs

Observation
The axiom of choice is a source of non-constructive proofs.
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Non-Constructive Proofs

Definition
The Cartesian product (or generalised product) of a family of sets ⟨Ai | i ∈ I⟩ is
defined by

×
i∈I

Ai :=
{

f

∣∣∣∣∣ f : I →
⋃
i∈I

Ai and ∀i (i ∈ I → f(i) ∈ Ai)
}

.
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Non-Constructive Proofs

Definition
Axiom of choice: Let ⟨Hi | i ∈ I⟩ be a family a sets. If H(i) ̸= ∅ for all i ∈ I, then
×i∈I H(i) ̸= ∅ (Enderton 1977).

Equivalence Relations 55 

If anyone H(i) is empty, then clearly the product X
ieI 

H(i) is empty. 

Conversely, suppose that H(i) "# 0 for every i in I. Does it follow that 

X
ieI 

H(i)"# 0? To obtain a member! of the product, we need to select 

some member from each H(i), and put!(i) equal to that selected member. 
This requires the axiom of choice, and in fact this is one of the many 

equivalent ways of stating the axiom. 

Axiom of Choice (second form) For any set I and any function H 

with domain I, if H(i)"# 0 for all i in I, then X
ieI 

H(i)"# 0. 

H(O) H(I) H(2) H(3) H(4) 

Fig. 11. The thread is a member of the Cartesian product. 

Exercise 

31. Show that from the first form of the axiom of choice we can prove 

the second form, and conversely. 

EQUIVALENCE RELATIONS 

Consider a set A (Fig. 12a). We might want to partition A into little 

boxes (Fig. 12b). For example, take A = w; we can partition w into six 
parts: 

{a, 6, 12, ... }, 

{1, 7, 13, ... }, 

{5, 11, 17, ... }. 

By "partition" we mean that every element of A is in exactly one little box, 

and that each box is a nonempty subset of A. 

Now we need some mental agility. We want to think of each little box 

as being a single object, instead of thinking of it as a plurality of objects. 
(Actually we have been doing this sort of thing throughout the book, when­

ever we think of a set as a single object. It is really no harder than 
thinking of a brick house as a single object and not as a multitude of 

Illustration of the axiom of choice.†

†Figure source: (Enderton 1977, Fig. 11).
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The Brouwer-Heyting-Kolmogorov (BHK) Interpretation

Logical constants
∧ (and) conjunction
∨ (or) (inclusive) disjunction
⊃ (if , then ) conditional
⊥ (falsity) bottom, falsum
∀x (for every x) universal quantifier
∃x (there exists a x) existential quantifier

Definition
We define negation by ¬A := A ⊃ ⊥.
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The Brouwer-Heyting-Kolmogorov (BHK) Interpretation

Constructive interpretation of the logical constants

A proof of A ∧ B is a pair whose first
component is a proof of A and whose
second component is a proof of B.

A proof of A∨B is either a proof of A or a
proof of B together with the information
of which of A or B we have a proof.
A proof of A ⊃ B is a function (method,
program) which to each proof of A gives
a proof of B.

There is no proof of ⊥.
A proof of ¬A is a function (method,
program) with transforms a (hypothet-
ical) proof of A into a contradiction.
A proof of ∃x.A is a construction of a
witness d and a proof of A(d).
A proof of ∀x.A is a function (method,
program) which takes an arbitrary indi-
vidual d into a proof of A(d).
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Connection Between Proofs and Programs

Example
We define the follow predicates on natural numbers:

even(x) := ∃y.x = 2y,

odd(x) := ∃y.x = 2y + 1.

Prove that ∀x.even(x) ∨ odd(x).

Proof (by induction on x)
(whiteboard)
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Connection Between Proofs and Programs

Proof (by induction on x)
(i) Basis step: x = 0.

Then even(x) is true because for y = 0 (witness), x = 2y.
(ii) Inductive step: x = x′ + 1.

For inductive hypothesis even(x′) ∨ odd(x′) is true.
Case: even(x′) is true.
That is, x′ = 2y′ for some y′. Then x = 2y′ + 1 and therefore odd(x) is true
and the witness is y′.
Case: odd(x′) is true.
That is x′ = 2y′ + 1 for some y′. Then x = (2y′ + 1) + 1 = 2(y′ + 1) and
therefore even(x) is true and the witness is y′ + 1.
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Connection Between Proofs and Programs
Haskell function “from” the proof that ∀x.even(x) ∨ odd(x)

1 data Nat = Zero | Succ Nat
2
3 data EO = Even | Odd
4 deriving Show
5
6 isEvenOrOdd :: Nat -> EO
7 isEvenOrOdd Zero = Even
8 isEvenOrOdd (Succ n) = case isEvenOrOdd n of
9 Even -> Odd

10 Odd -> Even
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Connection Between Proofs and Programs
Haskell function with witness “from” the proof that ∀x.even(x) ∨ odd(x)

1 data Nat = Zero | Succ Nat
2 deriving Show
3
4 data EO = Even Nat | Odd Nat
5 deriving Show
6
7 isEvenOrOdd :: Nat -> EO
8 isEvenOrOdd Zero = Even Zero
9 isEvenOrOdd (Succ x) = case isEvenOrOdd x of

10 Even y -> Odd y
11 Odd y -> Even $ Succ y
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