CM0845 Logic Propositional Logic: Satisfiability

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2016-1

Propositional Logic: Satisfiability

Remark

The reference for this section is Ben-Ari [2012, § 2.5].

Satisfiability, Validity, Unsatisfiability and Falsifiability

Let $\varphi \in PROP$.

Definitions

- (i) φ is **satisfiable** iff $[\![\varphi]\!]_v=1$ for some interpretation v. In this case, v is called a model for φ .
- (ii) φ is **valid** (a tautology), denoted $\models \varphi$, iff $\llbracket \varphi \rrbracket_v = 1$ for all interpretations v.
- (iii) φ is **unsatisfiable** iff it is not satisfiable, that is, if $[\![\varphi]\!]_v = 0$ for all interpretations v.
- (iv) φ is **falsifiable**, denoted $\not\models$, iff it is not valid, that is, if $[\![\varphi]\!]_v=0$ for some interpretation v.

Satisfiability, Validity, Unsatisfiability and Falsifiability

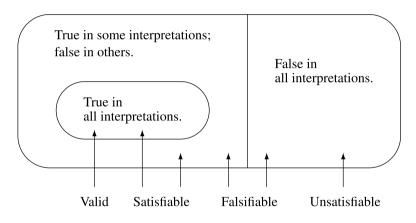


Figure 2.6 of [Ben-Ari 2012].

Satisfiability, Validity, Unsatisfiability and Falsifiability

Theorem (Ben-Ari [2012], Theorem 2.39) Let $\varphi \in PROP$.

- (i) The proposition φ is valid if and only if $\neg \varphi$ is unsatisfiable.
- (ii) The proposition φ is satisfiable if and only if $\neg \varphi$ is falsifiable.

Satisfiability of a Set of Propositions

Let $\Gamma = \{\varphi_1, \dots\}$ be a set of propositions.

Definitions

- (i) Γ is **satisfiable** iff there exists an interpretation v such that $[\![\varphi]\!]_v = 1$ for all $\varphi_i \in \Gamma$. In this case, v is a model of Γ .
- (ii) Γ is **unsatisfiable** iff for every interpretation v, there exists an $\varphi_i \in \Gamma$ such that $[\![\varphi]\!]_v = 0$.

Satisfiability of a Set of Propositions

Let $\Gamma = \{\varphi_1, \dots\}$ be a set of propositions.

Definitions

- (i) Γ is **satisfiable** iff there exists an interpretation v such that $[\![\varphi]\!]_v = 1$ for all $\varphi_i \in \Gamma$. In this case, v is a model of Γ .
- (ii) Γ is **unsatisfiable** iff for every interpretation v, there exists an $\varphi_i \in \Gamma$ such that $[\![\varphi]\!]_v = 0$.

Example

Prove that if Γ is unsatisfiable and for some i, the proposition φ_i is valid, then $\Gamma - \{\varphi_i\}$ is unsatisfiable [Ben-Ari 2012, Exercise 2.15, p. 46].

References

Ben-Ari, Mordechai [1993] (2012). Mathematical Logic for Computer Science. 3rd ed. Springer (cit. on pp. 2, 4-7).