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Convention
The references for this section are van Dalen [2013, § 2.4 and § 2.6]
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Derivation Rules for {A,—, L}

Implication
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Remark: In the application of the —I rule, we may discharge zero, one, or more occurrences of
the assumption.
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Bottom elimination
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Proof by contradiction (reductio ad absurdum)
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where —p 1= — L.



Derivation Rules for {A,—, L}
Definition

Let I" be a set of formulae and let ¢ be a formula. The relation I' - ¢ means that there is a
derivation with conclusion ¢ from the set of hypotheses I'.
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Derivation Rules for {A,—, L}

Example

A derivation where every assumption is discharged once. A proof of Pierce's law
(=) = 0) = or

Proof
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*Adapted from [Alastair I
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Derivation Rules for {A,—, L}

Example

A derivation using the same assumption twice. A proof that - (p A1) = (Y A ).
Proof
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Derivation Rules for {A,—, L}

Example

A derivation where the assumption and the conclusion are the same. A proof that - ¢ — ¢.

Proof
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Derivation Rules for {A,—, L}

Remark
‘The rule schemes of natural deduction display only the open assumptions that are active in the

rule, but there may be any number of other assumptions.” [Negri and von Plato , p- 10]
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Derivation Rules for {A,—, L}

Remark

‘The rule schemes of natural deduction display only the open assumptions that are active in the
rule, but there may be any number of other assumptions.” [Negri and von Plato , p- 10]
Example

A derivation where there is a vacuous discharge when using the inference rule —I. A proof
that - ¢ — (¥ — ).

Proof
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Derivation Rules for {A,—, L}

Example

A derivation using one hypothesis. A proof that ¢ = =(—¢ A 1)) [van Dalen
Exercise 3.(a), p. 37].

Proof
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Derivation Rules for {A,—, L}

Example

A derivation using the same hypothesis twice. A proof that ¢ A1 F ¥ A .

Proof
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Set of Derivations

Notation
(Whiteboard)

Definition (van Dalen | |, Definition 2.4.1)
The set of derivations, denoted D, is the smallest set X with the properties:

(see next slide)
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Set of Derivations

(1)  The one-element tree ¢ belongs to X for all ¢ € PROP.

, DD
(2A) If";, Z € X,then ¢ ¢ €X.
oAy
D D D
Ifwm/f € X, then oAy, oAV € X,
® ¥
@ [¢]
(2—) If p €X,then 5 eX.
1// -
=Y
, D D
If?, wzw € X,then ¢ ¢—¥ € X.

v
D
2L1) Iff € X,then L €X.
4
—¢ [—e]
If p €eX,then P eX.
7 1
(2
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Derivation Rules for the Missing Connectives {V, =, <}

Disjunction
[l [
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16/25



Negation
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Derivation Rules for the Missing Connectives {V, =, <}

Equivalence
)
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Derivation Rules for {A,V,—, L}
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Derivation Rules for {A,V,—, L}

Example
Prove that F ¢ V = [van Dalen , example p. 49].
Proof
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Natural Deduction in Sequent Calculus Style
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Natural Deduction in Sequent Calculus Style

Example
We prove that F ¢ V —p.

(continued on next slide)
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Natural Deduction in Sequent Calculus Style

Proof
Let I' = {¢, (¢ V =)} and A =T — {p}.
Ax
'k
— VI Ax
F'keV-p ' =(pV-p)
—E
'L
1
At —p
——FF VI Ax
AFpV-p At =(pV-p)
—E
AL

FoV-p
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Natural Deduction in Sequent Calculus Style

Example
A derivation where there is a vacuous discharge when using the inference rule —I. A proof

that - ¢ — (¥ — ).
Proof

Ax

pho
—1 (vacuous discharge of 1)
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https://github.com/Alastair-Carr/Natural-Deduction-Pack
https://github.com/Alastair-Carr/Natural-Deduction-Pack
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