CM0845 Logic First-Order Logic: Natural Deduction

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2016-1

First-Order Logic: Natural Deduction

Remark

The references for this section are van Dalen [2013, § 3.8 and § 3.9].

Universal quantifier

$$\frac{\varphi(x)}{\forall x \varphi(x)} \forall \mathbf{I} \qquad \frac{\forall x \varphi(x)}{\varphi[t/x]} \forall \mathbf{E}$$

Side condition: In $\forall I$, the variable x may not occur free in any hypothesis on which $\varphi(x)$ depends.

Existential quantifier

$$[\varphi(x)]^x$$

$$\vdots$$

$$\frac{\exists x \varphi(x)}{\psi} \exists \mathbf{E}^x$$

Side condition: In $\exists E$, the variable x is not free in ψ , or in a hypothesis of the sub-derivation of ψ , other than $\varphi(x)$.

Example

The derivation rules for the quantifiers are consistent with the convention that the universe of discourse is not empty, so we can prove that $\vdash \forall x \varphi(x) \to \exists x \varphi(x)$.

Proof

$$\frac{\frac{\left[\forall x \varphi(x)\right]^{x}}{\varphi(x)}}{\exists x \varphi(x)} \, \forall \mathbf{E}$$

$$\frac{\exists x \varphi(x)}{\exists x \varphi(x)} \, \exists \mathbf{I}$$

$$\forall x \varphi(x) \to \exists x \varphi(x)$$

Example

Prove that $\vdash \exists x (\varphi(x) \lor \psi(x)) \to \exists x \varphi(x) \lor \exists x \psi(x)$ [van Dalen 2013, p. 92].

Proof

$$\frac{\left[\varphi(x)\right]^{x}}{\exists x\varphi(x)}\exists \mathbf{I} \qquad \frac{\left[\psi(x)\right]^{y}}{\exists x\psi(x)}\exists \mathbf{I} \qquad \frac{\left[\psi(x)\right]^{y}}{\exists x\psi(x)}\exists \mathbf{I}$$

$$\frac{\left[\varphi(x)\vee\psi(x)\right]^{z}}{\exists x\varphi(x)\vee \exists x\psi(x)}\vee \mathbf{I} \xrightarrow{\exists x\varphi(x)\vee \exists x\psi(x)}\vee \mathbf{E}^{x,y}$$

$$\frac{\exists x\varphi(x)\vee \exists x\psi(x)}{\exists x(\varphi(x)\vee \psi(x))\rightarrow \exists x\varphi(x)\vee \exists x\psi(x)}\rightarrow \mathbf{I}^{w}$$

Derivation Rules for the Identity

Identity

$$\frac{x = y}{y = x} \operatorname{RI}_{1} \qquad \frac{x = y}{y = x} \operatorname{RI}_{2} \qquad \frac{x = y}{x = z} \operatorname{RI}_{3}$$

$$\frac{x_{1} = y_{1}, \dots, x_{n} = y_{n}}{t[x_{1}, \dots, x_{n}/z_{1}, \dots, z_{n}] = t[y_{1}, \dots, y_{n}/z_{1}, \dots, z_{n}]} \operatorname{RI}_{4}$$

$$\frac{x_{1} = y_{1}, \dots, x_{n} = y_{n} \qquad \varphi[x_{1}, \dots, x_{n}/z_{1}, \dots, z_{n}]}{\varphi[y_{1}, \dots, y_{n}/z_{1}, \dots, z_{n}]} \operatorname{RI}_{4}$$

Derivation Rules for the Identity

Example

The derivation rules for the identity are consistent with the convention that the universe of discourse is not empty, so we can prove that $\vdash \exists x(x=x)$.

Proof

$$\frac{\overline{x = x} \operatorname{RI}_1}{\exists x (x = x)} \exists I$$

References

van Dalen, Dirk [1980] (2013). Logic and Structure. 5th ed. Springer (cit. on pp. 2, 6).