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Preliminaries
Convention
The number assigned to chapters, examples, exercises, figures, sections, and theorems on these
slides correspond to the numbers assigned in the textbook [Enderton 1977].
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Ordered Pairs
Observation
Let a and b be sets. An ordered pair ⟨a, b⟩ should be a set such that

⟨a, b⟩ = ⟨c, d⟩ iff a = c ∧ b = d.

Definition
We define an ordered pair using Kuratowski’s definition, that is,

⟨a, b⟩ := {{a}, {a, b}}.
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Ordered Pairs
Example
We show that ⟨∅, {∅}⟩ ≠ ⟨{∅}, ∅⟩.

⟨∅, {∅}⟩ = {{∅}, {∅, {∅}}}
= {{∅}, {{∅}, ∅}}
̸= {{{∅}}, {{∅}, ∅}}
= ⟨{∅}, ∅⟩.
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Ordered Pairs
Example
Let a be a set. Then

⟨a, a⟩ = {{a}, {a, a}}
= {{a}, {a}}
= {{a}}.

Exercise
To give a different definition of ordered pair.
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Ordered Pairs
Example
Let a be a set. Then
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Cartesian Product
Definition
Let A and B be sets. The Cartesian product of A and B is defined by

A × B := { ⟨x, y⟩ | x ∈ A ∧ y ∈ B }.

Observation
Let A and B be sets. Note that A × B is a set because we can define it via the subset axiom
scheme.

A × B := { ⟨x, y⟩ ∈ PP(A ∪ B) | x ∈ A ∧ y ∈ B }.
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Relations
Definition
A relation is a set of ordered pairs.

Notation
Let R be a relation. We can write ⟨a, b⟩ ∈ R or aRb.

Example
Let R the relation defined by R = {⟨a, b⟩, ⟨b, b⟩, ⟨c, b⟩}. Diagram: whiteboard.

Example
Let ω = {0, 1, 2, . . . }. The identity relation on ω is defined by

Iω := { ⟨n, n⟩ | n ∈ ω }
= {⟨0, 0⟩, ⟨1, 1⟩, ⟨2, 2⟩, . . . }.
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Relations
Definition
Let R be a relation. We define the domain, the range and the field of R by

dom R := { x | ∃y(⟨x, y⟩ ∈ R) },

ran R := { y | ∃x(⟨x, y⟩ ∈ R) },

fld R := dom R ∪ ran R.

Observation
Let R be a relation. Note that dom R and ran R are sets because we can define them via the
subset axiom scheme.

dom R :=
{

x ∈
⋃ ⋃

R
∣∣∣ ∃y(⟨x, y⟩ ∈ R)

}
,

ran R :=
{

y ∈
⋃ ⋃

R
∣∣∣ ∃x(⟨x, y⟩ ∈ R)

}
.
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n-Ary Relations
Definition
We define an ordered n-tuple, for n ≥ 3, by

⟨x1, x2, . . . , xn⟩ := ⟨⟨x1, x2, . . . , xn−1⟩, xn⟩

Example
Ordered triple (3-tuple) and ordered quadruple (4-tuple).

⟨x1, x2, x3⟩ := ⟨⟨x1, x2⟩, x3⟩,
⟨x1, x2, x3, x4⟩ := ⟨⟨x1, x2, x3⟩, x4⟩.

Definition
We define an 1-tuple by

⟨x⟩ := x.
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n-Ary Relations
Definition
Let A be a set. We define an n-ary relation on A to be a set of ordered n-tuples with all
components in A.

Example
Whiteboard.

Observation
Let A be a set. Note that an 1-ary relation on A is just a subset of A but it is not a relation.
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Functions
Definition
A function (mapping or correspondence) is a relation F such that for each x in dom F there
is only one y such that xFy.

Notation
We write F : A → B iff F is a function, dom F = A and ran F ⊆ B.

Definition
Let F be a function and A and B sets.
(i) F is a function on (from) A iff dom F = A.
(ii) F is a function into (to) B iff ran F ⊆ B.
(iii) F is a function onto B iff ran F = B.
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Functions
Exercise 3.11
Prove the following version (for functions) of the extensionality principle: Assume that F and G
are functions, dom F = dom G, and F (x) = G(x) for all x in the common domain. Then
F = G.
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Functions
Definition
A function F is one-to-one (or injective) iff for each y ∈ ran F there is only one x such that
xFy. In other words, if x1, x2 ∈ dom F and x1 ̸= x2 implies f(x1) ̸= f(x2).

Example
Whiteboard.

Definition
A function F is an one-to-one correspondence between A and B iff F is an one-to-one
function from A onto B.

Example
Whiteboard.
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Functions
Definition
Let A, F and G be sets. We define, the inverse of F , the composition of F and G, the
restriction of F to A and the image of A under F by

F −1 := { ⟨y, x⟩ | xFy } (inverse of F )

F ◦ G := { ⟨x, y⟩ | ∃t (xGt ∧ tFy) } (composition of F and G)

F ↾ A := { ⟨x, y⟩ | x ∈ A ∧ xFy } (restriction of F to A)

F JAK := ran (F ↾ A) (image of A under F )
= { y | ∃x (x ∈ A ∧ xFy) }
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Functions
Example
Let

F = {⟨∅, a⟩, ⟨{∅}, b⟩}.

Then

dom F = {∅, {∅}}
ran F = {a, b}, F is a function,

F −1 = {⟨a, ∅⟩, ⟨b, {∅}⟩}, F −1 is function iff a ̸= b,

F ↾ ∅ = ∅,

F ↾ {∅} = {⟨∅, a⟩},

F J{∅}K = {a},

F ({∅}) = b.
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Functions
Exercise 3.18
Let R be the set

{⟨0, 1⟩, ⟨0, 2⟩, ⟨0, 3⟩, ⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}.

To find R ◦ R, R ↾ {1}, R−1 ↾ {1}, RJ{1}K and R−1J{1}K.

Exercise (p. 44)
Let A, F and G be sets. Show that F −1, F ◦ G, F ↾ A and F JAK are sets.
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Functions
Theorem 3E
Let F be a set. Then

dom F −1 = ran F and ran F −1 = dom F.

If additionally F is a relation, then
(F −1)−1 = F.
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Functions
Theorem 3G
Let F be an one-to-one function.

If x ∈ dom F , then
F −1(F (x)) = x.

If y ∈ ran F , then
F (F −1(y)) = y.
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Functions
Theorem 3H
Let F and G be functions. Then

F ◦ G is a function,
dom (F ◦ G) = { x ∈ dom G | G(x) ∈ dom F } and
if x ∈ dom (F ◦ G), then (F ◦ G)(x) = F (G(x)).
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Functions
Theorem 3I
Let F and G be sets. Then

(F ◦ G)−1 = G−1 ◦ F −1.
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Functions
Theorem 3J
Let F be a function F : A → B and A ̸= ∅.
(i) There exists a function G : B → A (a “left inverse”) such that G ◦ F is the identity

function IA on A iff the function F is one-to-one.
(ii) There exists a function H : B → A (a “right inverse”) such that F ◦ H is the identity

function IB on B iff the function F maps A onto B.
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Functions
Axiom of choice (first form)
For any relation R there is a function H ⊆ R with dom H = dom R.

Example
Whiteboard.

Observation
Is the axiom of choice accepted in constructive mathematics? (See, e.g. Martin-Löf [2006]).
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Functions
Definition
Let A and B be sets. We define the set of functions from A into B by

BA := { F | F : A → B }=: AB.

Example
{0, 1}ω: The set of infinity binary sequences.
∅A = ∅ for A ̸= ∅ (no function can have a non-empty domain and an empty range).
A∅ = {∅} for any set A (∅ is the only function with an empty domain).
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Functions
Observation
Let A and B be sets. Note that BA is a set because we can define it via the subset axiom
scheme.

BA := { F ∈ P(A × B) | F : A → B }.
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Families
Observation
Families is another way to express functions when the range of a function is more important
than the function itself. We write functions as families when we want to put the emphasis on
the values of the function rather in the function.∗

Observation
The terminology and notation on families is not established.

∗Enderton [1977] do not use families, but ‘only’ functions.
3. Relations and Functions 45/81



Families
Observation
Families is another way to express functions when the range of a function is more important
than the function itself. We write functions as families when we want to put the emphasis on
the values of the function rather in the function.∗

Observation
The terminology and notation on families is not established.

∗Enderton [1977] do not use families, but ‘only’ functions.
3. Relations and Functions 46/81



Families
Definition
Let I and X be sets. A family in X indexed by I is a function

A : I → X

A = { ⟨i, Ai⟩ | i ∈ I and Ai ∈ X },

where Ai := A(i), for all i ∈ I.∗ The set I is the index set of the family.

Notation
The above family A is denoted by ⟨Ai | i ∈ I⟩ following to [Hrbacek and Jech (1978) 1999].

∗See, e.g. Halmos [1960], Drake [1974] and Hamilton [(1982) 1992].
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Families
Definition
The union of a family ⟨Ai | i ∈ I⟩ is defined by⋃

i∈I

Ai :=
⋃

{ Ai | i ∈ I }

= { x | x ∈ Ai for some i in I }.

Example
Whiteboard.
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Families
Definition
The intersection of a family ⟨Ai | i ∈ I⟩ is defined by⋂

i∈I

Ai :=
⋂

{ Ai | i ∈ I }

= { x | x ∈ Ai for every i in I }.

Example
Whiteboard.
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Families
Definition
The intersection of a family ⟨Ai | i ∈ I⟩ is defined by⋂

i∈I

Ai :=
⋂

{ Ai | i ∈ I }

= { x | x ∈ Ai for every i in I }.

Example
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Families
Definition
The Cartesian product (or generalised product) of a family ⟨Ai | i ∈ I⟩ is defined by

×
i∈I

Ai := { f | f : I →
⋃

i∈I Ai and ∀i (i ∈ I → f(i) ∈ Ai) }=:
∏
i∈I

Ai.

Example
Let ⟨Ai | i ∈ I⟩ be a family. If Ai = B for all i ∈ I, then

×
i∈I

Ai = BI

= { f | f : I → B }.
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Families
Example
The following example illustrates the generalisation of the Cartesian product.

Let X and Y be two sets. Recall that the Cartesian product of X and Y was defined by

X × Y := { ⟨x, y⟩ | x ∈ X ∧ y ∈ Y }.

(continued on next slide)
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Families
Example (continuation)
Let I = {a, b} be an index set and let ⟨Zi | i ∈ I⟩ be a family where Za = X and Zb = Y .
Then

×
i∈I

Zi = { f | f : I → X ∪ Y, such that f(a) ∈ X and f(b) ∈ Y }.

Now, we can define the one-to-one correspondence

h :×
i∈I

Zi → X × Y

h(f) = ⟨f(a), f(b)⟩.
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Families
Axiom of choice (second form)
Let ⟨Hi | i ∈ I⟩ be a family. If H(i) ̸= ∅ for all i ∈ I, then×i∈I H(i) ̸= ∅.∗

Equivalence Relations 55 

If anyone H(i) is empty, then clearly the product X
ieI 

H(i) is empty. 

Conversely, suppose that H(i) "# 0 for every i in I. Does it follow that 

X
ieI 

H(i)"# 0? To obtain a member! of the product, we need to select 

some member from each H(i), and put!(i) equal to that selected member. 
This requires the axiom of choice, and in fact this is one of the many 

equivalent ways of stating the axiom. 

Axiom of Choice (second form) For any set I and any function H 

with domain I, if H(i)"# 0 for all i in I, then X
ieI 

H(i)"# 0. 

H(O) H(I) H(2) H(3) H(4) 

Fig. 11. The thread is a member of the Cartesian product. 

Exercise 

31. Show that from the first form of the axiom of choice we can prove 

the second form, and conversely. 

EQUIVALENCE RELATIONS 

Consider a set A (Fig. 12a). We might want to partition A into little 

boxes (Fig. 12b). For example, take A = w; we can partition w into six 
parts: 

{a, 6, 12, ... }, 

{1, 7, 13, ... }, 

{5, 11, 17, ... }. 

By "partition" we mean that every element of A is in exactly one little box, 

and that each box is a nonempty subset of A. 

Now we need some mental agility. We want to think of each little box 

as being a single object, instead of thinking of it as a plurality of objects. 
(Actually we have been doing this sort of thing throughout the book, when­

ever we think of a set as a single object. It is really no harder than 
thinking of a brick house as a single object and not as a multitude of 

∗Figure source: Enderton [1977, Fig. 11].
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Equivalence Relations
Definition
Let R be a binary relation on a set A. The relation R is

reflexive iff xRx for all x ∈ A,

symmetric iff xRy implies yRx for all x, y ∈ A and
transitive iff xRy and yRz imply xRz for all x, y, z ∈ A.

Example
Whiteboard.
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Equivalence Relations
Questions

Let A = {a, e, i, o, u}. Is the equality relation on A an equivalence relation?

Let A ̸= ∅ be a set. Is the relation ∅ on A an equivalence relation?
Let A be a set. Is the relation A × A an equivalence relations?
Let A be a singleton. It is possible to define an equivalence relation on A?

3. Relations and Functions 64/81



Equivalence Relations
Questions

Let A = {a, e, i, o, u}. Is the equality relation on A an equivalence relation?
Let A ̸= ∅ be a set. Is the relation ∅ on A an equivalence relation?

Let A be a set. Is the relation A × A an equivalence relations?
Let A be a singleton. It is possible to define an equivalence relation on A?

3. Relations and Functions 65/81



Equivalence Relations
Questions

Let A = {a, e, i, o, u}. Is the equality relation on A an equivalence relation?
Let A ̸= ∅ be a set. Is the relation ∅ on A an equivalence relation?
Let A be a set. Is the relation A × A an equivalence relations?

Let A be a singleton. It is possible to define an equivalence relation on A?

3. Relations and Functions 66/81



Equivalence Relations
Questions

Let A = {a, e, i, o, u}. Is the equality relation on A an equivalence relation?
Let A ̸= ∅ be a set. Is the relation ∅ on A an equivalence relation?
Let A be a set. Is the relation A × A an equivalence relations?
Let A be a singleton. It is possible to define an equivalence relation on A?

3. Relations and Functions 67/81



Equivalence Relations
Definition
The set [x]R is defined by

[x]R := { t | xRt }.

Definition
Let R be an equivalence relation on a set A and let x ∈ fld R. The set [x]R is the equivalence
class of x (modulo R).

Notation
We write [x] if the relation R is clear in the context.

Example
Whiteboard.
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Equivalence Relations
Theorem 3N
Let R be an equivalence relation on a set A and let x, y ∈ A. Then

[x]R = [y]R iff xRy.
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Equivalence Relations
Theorem 3P
Let R be an equivalence relation on a set A. Then the set

{ [x]R | x ∈ A }

of all equivalence classes is a partition of the set A.

Exercise 3.37
Assume that Π is a partition of a set A. Define the relation RΠ as follows:

xRΠy iff (∃B ∈ Π)(x ∈ B ∧ y ∈ B).

Show that RΠ is an equivalence relation on A.
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Equivalence Relations
Definition
Let R be an equivalence relation on a set A. The quotient set is defined by

A/R := { [x]R | x ∈ A }.

Definition
Let R be an equivalence relation on a set A. The natural map (or canonical map) is the
function

f : A → A/R

f(x) = [x]R.

Observation
Using the λ-notation we could define the natural map by the anonymous function λx.[x]R.
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Linear Ordering Relations
Motivation
What means that R is an ordering relation on a set A?

Definition
Let R be a binary relation on a set A. The relation R satisfies trichotomy if exactly one of the
three alternatives

xRy, x = y or yRx

holds for all x, y ∈ A.
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Linear Ordering Relations
Definition
Let A be a set. A linear ordering (or total ordering) on A is a binary relation R on A such
that:
(i) R is transitive relation and
(ii) R satisfies trichotomy.

Example

0
1
2
3

...
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