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Preliminaries

Convention
The number assigned to chapters, examples, exercises, figures, sections, and theorems on these

slides correspond to the numbers assigned in the textbook [Enderton 1977].
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Ordered Pairs

Observation

Let a and b be sets. An ordered pair (a,b) should be a set such that
(a,b) = {(c,d) iff a=cAb=d.

Definition

We define an ordered pair using Kuratowski's definition, that is,

<a7 b> = {{a}v {av b}}
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Ordered Pairs

Example

We show that (0, {0}) # ({0}, 0).

0,{0}) = {{0},{0.{0}}}
= {{0}, {{0}, 03}
7 {{{0}1}, {{0}, 03}
= ({0}, 0).
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Ordered Pairs

Example
Let a be a set. Then

(a,a) = {{a}, {a, a}}
= {{a}, {a}}
= {{a}}.
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Ordered Pairs

Example
Let a be a set. Then

(a,a) = {{a}, {a, a}}
= {{a}, {a}}
= {{a}}.

Exercise

To give a different definition of ordered pair.
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Cartesian Product

Definition
Let A and B be sets. The Cartesian product of A and B is defined by

AxB:={(z,y) |r€ ANy € B}.
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Cartesian Product

Definition
Let A and B be sets. The Cartesian product of A and B is defined by

AxB:={(z,y) |r€ ANy € B}.

Observation

Let A and B be sets. Note that A x B is a set because we can define it via the subset axiom
scheme.
Ax B :={(z,y) e PP(AUB) |z € ANy € B}.
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Relations

Definition

A relation is a set of ordered pairs.
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Relations

Definition
A relation is a set of ordered pairs.

Notation
Let R be a relation. We can write (a,b) € R or aRb.
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Relations

Definition
A relation is a set of ordered pairs.

Notation
Let R be a relation. We can write (a,b) € R or aRb.

Example
Let R the relation defined by R = {(a,b), (b,b), (¢, b)}. Diagram: whiteboard.
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Relations

Definition
A relation is a set of ordered pairs.

Notation
Let R be a relation. We can write (a,b) € R or aRb.

Example
Let R the relation defined by R = {(a,b), (b,b), (¢, b)}. Diagram: whiteboard.

Example
Let w={0,1,2,...}. The identity relation on w is defined by

={(n,n)|new}

={(0,0), {1, 1),(2,2),...}.
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Relations

Definition
Let R be a relation. We define the domain, the range and the field of R by
dom R :={z | Jy((z,y) € R) },
ran R := {y [ 3z((z,y) € R) },
fld R := dom R Uran R.
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Relations

Definition
Let R be a relation. We define the domain, the range and the field of R by

domR :={z | Jy((z,y) € R) },
ran R :={y | Jz((z,y) € R) },
fld R := dom RUran R.

Observation
Let R be a relation. Note that dom R and ran R are sets because we can define them via the
subset axiom scheme.

dom R := {xe UUR ‘ Fy(z,y) € R)},
ran R := {ye UUR ‘ Jz((x,y) € R)}
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n-Ary Relations

Definition
We define an ordered n-tuple, for n > 3, by

(1,22, ) 1= ((T1, 22, ..., Tp—1), Tp)
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n-Ary Relations

Definition
We define an ordered n-tuple, for n > 3, by

(1,22, ) 1= ((T1, 22, ..., Tp—1), Tp)

Example

Ordered triple (3-tuple) and ordered quadruple (4-tuple).

(x1, 29, 23) := ((x1,22), x3),

(w1, 29,23, 24) := ({21, T2, T3), 24).
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n-Ary Relations

Definition
We define an ordered n-tuple, for n > 3, by

(1,22, ) 1= ((T1, 22, ..., Tp—1), Tp)

Example

Ordered triple (3-tuple) and ordered quadruple (4-tuple).

(x1, 29, 23) := ((x1,22), x3),

(w1, 29,23, 24) := ({21, T2, T3), 24).

Definition
We define an 1-tuple by
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n-Ary Relations

Definition

Let A be a set. We define an n-ary relation on A to be a set of ordered n-tuples with all
components in A.
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n-Ary Relations

Definition
Let A be a set. We define an n-ary relation on A to be a set of ordered n-tuples with all
components in A.

Example
Whiteboard.

Observation
Let A be a set. Note that an 1-ary relation on A is just a subset of A but it is not a relation.
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Functions

Definition
A function (mapping or correspondence) is a relation F' such that for each z in dom F' there
is only one y such that xF'y.
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Functions

Definition
A function (mapping or correspondence) is a relation F' such that for each z in dom F' there
is only one y such that xF'y.

Notation
We write F': A — B iff F' is a function, dom F' = A and ran F' C B.
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Functions

Definition
A function (mapping or correspondence) is a relation F' such that for each z in dom F' there
is only one y such that xF'y.

Notation
We write F': A — B iff F' is a function, dom F' = A and ran F' C B.

Definition
Let /" be a function and A and B sets.

(i) F'is a function on (from) A iff dom F' = A.
(i) Fis a function into (to) B iff ran F' C B.
(iii) F is a function onto B iff ran F' = B.
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Functions

Exercise 3.11
Prove the following version (for functions) of the extensionality principle: Assume that ' and G
are functions, dom F' = dom G, and F(x) = G(x) for all = in the common domain. Then

F=aG.
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Functions

Definition
A function F' is one-to-one (or injective) iff for each y € ran F' there is only one x such that
xFy. In other words, if 1,29 € dom F' and x1 # x5 implies f(x1) # f(x2).
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Functions

Definition
A function F' is one-to-one (or injective) iff for each y € ran F' there is only one x such that
xFy. In other words, if 1,29 € dom F' and x1 # x5 implies f(x1) # f(x2).

Example
Whiteboard.
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Functions

Definition
A function F' is one-to-one (or injective) iff for each y € ran F' there is only one x such that
xFy. In other words, if 1,29 € dom F' and x1 # x5 implies f(x1) # f(x2).

Example
Whiteboard.

Definition
A function F is an one-to-one correspondence between A and B iff [' is an one-to-one
function from A onto B.
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Functions

Definition
A function F' is one-to-one (or injective) iff for each y € ran F' there is only one x such that
xFy. In other words, if 1,29 € dom F' and x1 # x5 implies f(x1) # f(x2).

Example
Whiteboard.

Definition
A function F is an one-to-one correspondence between A and B iff [' is an one-to-one
function from A onto B.

Example
Whiteboard.
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Functions

Definition
Let A, F" and GG be sets. We define, the inverse of F', the composition of ' and G, the
restriction of F' to A and the image of A under F' by

FL={(y,z) | zFy} (inverse of F)
FoG:={(x,y) | It (=Gt NtFy)} (composition of /' and )
FlA={(x,y)|r€e ANzFy} (restriction of F' to A)
F[A] :=ran(F | A) (image of A under F)

={y|Jz(xe ANxFy)}
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Functions

Example
Let
F={(0,a), ({0},0)}.
Then
dom F = {0,{0}}
ran F' = {a, b}, F is a function,
F~1 = {{a,0), (b, {0})}, F~1 is function iff a # b,
F10=0,
F1{0} = {0, a)},
F{0}] = {a},
F({0}) =b.
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Functions

Exercise 3.18

Let R be the set
{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}.

To find Ro R, R | {1}, R~' | {1}, R[{1}] and R™'[{1}].
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Functions

Exercise 3.18

Let R be the set
{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}.

To find Ro R, R | {1}, R~' | {1}, R[{1}] and R™'[{1}].

Exercise (p. 44)
Let A, F and G be sets. Show that !, Fo G, F' | A and F[A] are sets.
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Functions

Theorem 3E
Let F' be a set. Then

domF'=ranF and ranF~!=domF.

If additionally F' is a relation, then
(FHl=F
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Functions

Theorem 3G
Let F' be an one-to-one function.
o If z € dom F, then

o If y € ran I, then
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Functions

Theorem 3H

Let /' and GG be functions. Then
@ ['o( is a function,
@ dom (FoG)={x€domG | G(z) € domF }and
e if x € dom (F o G), then (F o G)(x) = F(G(x)).

3. Relations and Functions 34/81



Functions

Theorem 3l

Let F' and G be sets. Then
(FoG) ' =G 1oF
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Functions

Theorem 3J
Let F' be a function F': A — B and A # ().

(i) There exists a function G : B — A (a “left inverse") such that G o I is the identity
function 14 on A iff the function F' is one-to-one.

(ii) There exists a function H : B — A (a “right inverse”) such that F' o H is the identity
function Iz on B iff the function F' maps A onto B.
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Functions

Axiom of choice (first form)
For any relation R there is a function H C R with dom H = dom R.
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Functions

Axiom of choice (first form)
For any relation R there is a function H C R with dom H = dom R.

Example
Whiteboard.
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Functions

Axiom of choice (first form)
For any relation R there is a function H C R with dom H = dom R.

Example
Whiteboard.

Observation
Is the axiom of choice accepted in constructive mathematics? (See, e.g. Martin-Lof [2006]).
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Functions

Definition
Let A and B be sets. We define the set of functions from A into B by

BA={F|F:A— B}=B.
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Functions

Definition
Let A and B be sets. We define the set of functions from A into B by

BA={F|F:A— B}=B.

Example
e {0,1}“: The set of infinity binary sequences.
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Functions

Definition
Let A and B be sets. We define the set of functions from A into B by

BA={F|F:A— B}=B.
Example

e {0,1}“: The set of infinity binary sequences.
o () = () for A # () (no function can have a non-empty domain and an empty range).
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Functions

Definition
Let A and B be sets. We define the set of functions from A into B by

BA={F|F:A— B}=B.

Example
e {0,1}“: The set of infinity binary sequences.
o () = () for A # () (no function can have a non-empty domain and an empty range).

o A = {()} for any set A () is the only function with an empty domain).
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Functions

Observation
Let A and B be sets. Note that B“ is a set because we can define it via the subset axiom

scheme.
BA={FePAxB)|F:A— B}.
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Families

Observation
Families is another way to express functions when the range of a function is more important
than the function itself. We write functions as families when we want to put the emphasis on

the values of the function rather in the function.*

*Enderton [1977] do not use families, but ‘only’ functions.
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Families

Observation

Families is another way to express functions when the range of a function is more important
than the function itself. We write functions as families when we want to put the emphasis on
the values of the function rather in the function.*

Observation
The terminology and notation on families is not established.

*Enderton [1977] do not use families, but ‘only’ functions.
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Families

Definition
Let / and X be sets. A family in X indexed by [ is a function

AT =X
Az{(i,AiHiEIandA?;GX},

where A; := A(i), for all i € I.* The set I is the index set of the family.

*See, e.g. Halmos [1960], Drake [1974] and Hamilton [(1982) 1992].
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Families

Definition
Let / and X be sets. A family in X indexed by [ is a function

AT =X
Az{(i,AiHiEIandA?;GX},

where A; := A(i), for all i € I.* The set I is the index set of the family.

Notation
The above family A is denoted by (A; | i € I) following to [Hrbacek and Jech (1978) 1999].

*See, e.g. Halmos [1960], Drake [1974] and Hamilton [(1982) 1992].
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Families

Definition
The union of a family (A; | i € I) is defined by
UAdi={Ailierl}
iel
={x |z e A, forsomeiinl}.
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Families

Definition
The union of a family (A; | i € I) is defined by
Udi=U{Ailiel}
iel
={x |z e A, forsomeiinl}.

Example
Whiteboard.
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Families

Definition
The intersection of a family (A4; | i € I) is defined by
NAi=({Ailiel}
iel
={x|xe A foreveryiinl}.
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Families

Definition
The intersection of a family (A4; | i € I) is defined by
NAi=({Ailiel}
iel
={x|xe A foreveryiinl}.

Example
Whiteboard.
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Families

Definition

The Cartesian product (or generalised product) of a family (A; | i € I) is defined by

XAi={f|f:1-UgcrAiandVi(iel— f(i)eA)}t=]]A.
el i€l
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Families

Definition
The Cartesian product (or generalised product) of a family (A; | i € I) is defined by
X A= {f|f:T—=UperAsandVi(i € I - f(i) € 4;) }=:[[ A
iel i€l
Example
Let (A; |7 € I) be a family. If A; = B for all i € I, then

X A; = BY

iel

={f|f:1— B}
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Families

Example
The following example illustrates the generalisation of the Cartesian product.

Let X and Y be two sets. Recall that the Cartesian product of X and Y was defined by

XxY ={(z,y) |lre X NyeY}

(continued on next slide)
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Families

Example (continuation)
Let I = {a,b} be an index set and let (Z; | i € I) be a family where Z, = X and Z, =Y.

Then
X Zi={f|f:1— XUY, such that f(a) € X and f(b) € Y }.

i€l
Now, we can define the one-to-one correspondence

hiXZi—XxY
i€l

h(f) = (f(a), f(b)).
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Families

Axiom of choice (second form)
Let (H; | i € I) be a family. If H(i) # () for all i € I, then X, H(i) # 0.*

H(0) H(1) H(Q)- H(3) H(4)

*Figure source: Enderton [1977, Fig. 11].
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Equivalence Relations

Definition
Let R be a binary relation on a set A. The relation R is

o reflexive iff tRx for all z € A,
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Equivalence Relations

Definition
Let R be a binary relation on a set A. The relation R is
o reflexive iff zRx for all z € A,

e symmetric iff xRy implies yRx for all x,y € A and
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Equivalence Relations

Definition
Let R be a binary relation on a set A. The relation R is
o reflexive iff zRx for all z € A,
e symmetric iff xRy implies yRx for all x,y € A and
o transitive iff xRy and yRz imply xRz for all z,y, z € A.

Example
Whiteboard.
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Equivalence Relations

Introduction
Whiteboard.
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Equivalence Relations

Introduction
Whiteboard.

Definition

Let R be a binary relation on a set A. The relation R is an equivalence relation iff R is
reflexive, symmetric and transitive.
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Equivalence Relations

Introduction
Whiteboard.

Definition

Let R be a binary relation on a set A. The relation R is an equivalence relation iff R is
reflexive, symmetric and transitive.

Example
Whiteboard.
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Equivalence Relations

Questions

o Let A ={a,e,i,0,u}. Is the equality relation on A an equivalence relation?
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Equivalence Relations

Questions
o Let A ={a,e,i,0,u}. Is the equality relation on A an equivalence relation?

o Let A+ () be a set. Is the relation () on A an equivalence relation?
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Equivalence Relations

Questions
o Let A ={a,e,i,0,u}. Is the equality relation on A an equivalence relation?
o Let A+ () be a set. Is the relation () on A an equivalence relation?

@ Let A be a set. Is the relation A x A an equivalence relations?
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Equivalence Relations

Questions
o Let A ={a,e,i,0,u}. Is the equality relation on A an equivalence relation?
Let A # () be a set. Is the relation () on A an equivalence relation?

Let A be a set. Is the relation A x A an equivalence relations?

Let A be a singleton. It is possible to define an equivalence relation on A?
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Equivalence Relations

Definition
The set [x]p is defined by
[x]g :={t| xRt }.
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Equivalence Relations

Definition
The set [x] g is defined by
[x]g :={t| xRt }.

Definition
Let R be an equivalence relation on a set A and let 2 € fld R. The set [z]r is the equivalence
class of = (modulo R).

Notation
We write [z] if the relation R is clear in the context.
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Equivalence Relations

Definition
The set [x] g is defined by
[x]g :={t| xRt }.

Definition

Let R be an equivalence relation on a set A and let 2 € fld R. The set [z]r is the equivalence
class of = (modulo R).

Notation
We write [z] if the relation R is clear in the context.

Example
Whiteboard.
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Equivalence Relations

Theorem 3N
Let R be an equivalence relation on a set A and let x,y € A. Then

[z]r = [lylr iff xRy
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Equivalence Relations

Theorem 3P
Let R be an equivalence relation on a set A. Then the set

{[zlr |z e A}

of all equivalence classes is a partition of the set A.
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Equivalence Relations

Theorem 3P
Let R be an equivalence relation on a set A. Then the set

{[z]r |z e A}
of all equivalence classes is a partition of the set A.

Exercise 3.37
Assume that II is a partition of a set A. Define the relation Ry as follows:

zRpy iff (3B ell)(x € BAy € B).

Show that Ry is an equivalence relation on A.
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Equivalence Relations

Definition

Let R be an equivalence relation on a set A. The quotient set is defined by

A/R ={[z]lgp |z € A}.
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Equivalence Relations

Definition
Let R be an equivalence relation on a set A. The quotient set is defined by

A/R:={[z]p |z € A}.

Definition
Let R be an equivalence relation on a set A. The natural map (or canonical map) is the
function

f:A— A/R
f(x) = [z]p.
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Equivalence Relations

Definition
Let R be an equivalence relation on a set A. The quotient set is defined by

A/R:={[z]p |z € A}.

Definition
Let R be an equivalence relation on a set A. The natural map (or canonical map) is the
function

f:iA— AJR
f(z) = [2]r.

Observation
Using the A-notation we could define the natural map by the anonymous function Ax.[z]x.
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Linear Ordering Relations

Motivation
What means that R is an ordering relation on a set A?
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Linear Ordering Relations

Motivation
What means that R is an ordering relation on a set A?

Definition
Let R be a binary relation on a set A. The relation R satisfies trichotomy if exactly one of the
three alternatives

xRy, x=vy or yRx

holds for all z,y € A.
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Linear Ordering Relations

Definition
Let A be a set. A linear ordering (or total ordering) on A is a binary relation R on A such
that:

(i) R is transitive relation and

(i) R satisfies trichotomy.
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Linear Ordering Relations

Definition

Let A be a set. A linear ordering (or total ordering) on A is a binary relation R on A such

that:
(i) R is transitive relation and

(i) R satisfies trichotomy.

Example
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