CM0832 Elements of Set Theory 7. Orderings and Ordinals

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2017-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Enderton 1977].

7. Orderings and Ordinals 2/29

Well-Orderings

Definition

A **well-ordering** on A is a linear ordering on A with the further property that every non-empty subset of A has a least element.

7. Orderings and Ordinals 3/29

Well-Orderings

Definition

A **well-ordering** on A is a linear ordering on A with the further property that every non-empty subset of A has a least element.

Definition

A **structure** is a pair $\langle A, R \rangle$ consisting of a set A and a binary relation R on A.

7. Orderings and Ordinals 4/29

Transfinite Induction Principle

Definition

Let < be some sort of ordering on A and $t \in A$. The **initial segment up to** t is the set

$$seg t := \{ x \in A \mid x < t \}.$$

7. Orderings and Ordinals 5/29

Transfinite Induction Principle

Definition

Let < be some sort of ordering on A and $t \in A$. The **initial segment up to** t is the set

$$\operatorname{seg} t := \{ x \in A \mid x < t \}.$$

Transfinite induction principle

Let $\langle A, < \rangle$ be a well-ordered structure and assume that B is a subset of A with the special property that for every t in A,

$$seg t \subseteq B$$
 implies $t \in B$.

Then B coincides with A.

7. Orderings and Ordinals 6/29

Transfinite Recursion Theorem

Definition

Let $\langle A, < \rangle$ be a well-ordered structure and let B a set. The set of all functions from initial segments of $\langle A, < \rangle$ into B is defined by

$$B^{A<} := \{ f \mid f : \operatorname{seg} t \to B, \text{ for some } t \in A \}.$$

7. Orderings and Ordinals 7/29

Transfinite Recursion Theorem

Definition

Let $\langle A, < \rangle$ be a well-ordered structure and let B a set. The set of all functions from initial segments of $\langle A, < \rangle$ into B is defined by

$$B^{A<} := \{ f \mid f : \operatorname{seg} t \to B, \text{ for some } t \in A \}.$$

Observation

Let $\langle A, < \rangle$ be a well-ordered structure and let B a set. Note that $B^{A<}$ is a set because we can define it via the subset axiom scheme.

$$B^{A<} := \{ f \in \mathcal{P}(A \times B) \mid f : \operatorname{seg} t \to B, \text{ for some } t \in A \}.$$

7. Orderings and Ordinals 8/29

Transfinite Recursion Theorem

Transfinite recursion theorem (preliminary form, p. 175)

Let $\langle A, < \rangle$ be a well-ordered structure and let $G: B^{A<} \to B$. Then there is a unique function F such that for any $t \in A$,

$$F:A\to B$$

$$F(t)=G(F\upharpoonright \operatorname{seg} t).$$

7. Orderings and Ordinals 9/29

Replacement axiom scheme

For any propositional function $\varphi(x,y)$, not containing B, the following is an axiom:

$$\forall A \left[\forall x \left(x \in A \to \exists ! y \, \varphi(x, y) \right) \to \exists B \, \forall y \left(y \in B \leftrightarrow \exists x \left(x \in A \land \varphi(x, y) \right) \right) \right].$$

7. Orderings and Ordinals

Replacement axiom scheme

For any propositional function $\varphi(x,y)$, not containing B, the following is an axiom:

$$\forall A \left[\forall x \left(x \in A \to \exists ! y \, \varphi(x, y) \right) \to \exists B \, \forall y \left(y \in B \leftrightarrow \exists x \left(x \in A \land \varphi(x, y) \right) \right) \right].$$

Observation

We stated an axiom scheme.

7. Orderings and Ordinals 11/29

Replacement axiom scheme

For any propositional function $\varphi(x,y)$, not containing B, the following is an axiom:

$$\forall A \left[\forall x \left(x \in A \to \exists ! y \, \varphi(x,y) \right) \to \exists B \, \forall y \left(y \in B \leftrightarrow \exists x \left(x \in A \land \varphi(x,y) \right) \right) \right].$$

Observation

We stated an axiom scheme.

Abstraction from the replacement axiom scheme

 $\{y \mid \exists x (x \in A \land \varphi(x,y))\}$ is a set.

7. Orderings and Ordinals 12/29

Replacement axiom scheme

For any propositional function $\varphi(x,y)$, not containing B, the following is an axiom:

$$\forall A \left[\forall x \left(x \in A \to \exists ! y \, \varphi(x, y) \right) \to \exists B \, \forall y \left(y \in B \leftrightarrow \exists x \left(x \in A \land \varphi(x, y) \right) \right) \right].$$

Observation

We stated an axiom scheme.

Abstraction from the replacement axiom scheme

```
\{y \mid \exists x (x \in A \land \varphi(x, y))\} is a set.
```

Observation

The propositional function φ can depend on other variables t_1,\ldots,t_k . In this case, we use $\varphi(x,y,t_1,\ldots,t_k)$ and we universally quantify on variables t_1,\ldots,t_k when using the axiom scheme

7. Orderings and Ordinals

Epsilon-Images*

7. Orderings and Ordinals

^{*&#}x27;The membership symbol (\in) is not typographically the letter epsilon but originally it was, and the name

[&]quot;epsilon" persists.' [Enderton 1977, p. 182]

Isomorphisms

Definition

Let $\langle A,R\rangle$ and $\langle B,S\rangle$ be two structures. An **isomorphism** from $\langle A,R\rangle$ onto $\langle B,S\rangle$ is a one-to-one function f from A onto B such that for all $x,y\in A$

x R y iff f(x) S f(y).

7. Orderings and Ordinals 15/29

Isomorphisms

Corollary 7H

Let α be the \in -image of a well-ordered structure $\langle A, < \rangle$. Then α is a transitive set and \in_{α} is a well ordering on α , where

$$\in_{\alpha} := \{ \langle x, y \rangle \in \alpha \times \alpha \mid x \in y \}.$$

7. Orderings and Ordinals

Idea

To assign a 'number' to each well-ordered structure that measures its 'length'. Two well-ordered structures should receive the same number, if and only if, they are isomorphic.

7. Orderings and Ordinals 17/29

Idea

To assign a 'number' to each well-ordered structure that measures its 'length'. Two well-ordered structures should receive the same number, if and only if, they are isomorphic.

Theorem 71

Two well-ordered structures are isomorphic iff they have the same ∈-image.

7. Orderings and Ordinals 18/29

Definition

Let < be a well-ordering on A. The **ordinal number** of $\langle A, < \rangle$ is its ϵ -image. An **ordinal number** is a set that is the ordinal number of some well-ordered structure.

7. Orderings and Ordinals 19/29

Definition

A set A is well-ordered by the membership relation iff the relation

$$\in_A := \{ \langle x, y \rangle \in A \times A \mid x \in y \}$$

is a well-ordering on A.

7. Orderings and Ordinals 20/29

Definition

A set A is well-ordered by the membership relation iff the relation

$$\in_A := \{ \langle x, y \rangle \in A \times A \mid x \in y \}$$

is a well-ordering on A.

Definition (other definition of ordinal number)

A set A is an **ordinal number** iff [Hrbacek and Jech (1978) 1999, p. 107]:

- (i) The set is transitive.
- (ii) The set is well-ordered by the membership relation.

7. Orderings and Ordinals 21/29

Burali-Forti theorem (p. 194)

There is no set to which every ordinal number belongs.

7. Orderings and Ordinals 22/29

Well-Ordering Theorem

Well-ordering theorem (p. 196)

For any set A, there is a well-ordering on A

7. Orderings and Ordinals 23/29

Definition

Let A be a set. The **cardinal number** of A, denoted $\operatorname{card} A$, is the least ordinal equinumerous to A.

7. Orderings and Ordinals 24/29

Definition

Let A be a set. The **cardinal number** of A, denoted $\operatorname{card} A$, is the least ordinal equinumerous to A.

Definition

An ordinal number is an **initial ordinal** iff it is not equinumerous to any smaller ordinal number.

7. Orderings and Ordinals 25/29

Definition

Let A be a set. The **cardinal number** of A, denoted $\operatorname{card} A$, is the least ordinal equinumerous to A.

Definition

An ordinal number is an **initial ordinal** iff it is not equinumerous to any smaller ordinal number.

Observation

Cardinal numbers and initial ordinals are the same numbers.

7. Orderings and Ordinals 26/29

Rank

Idea

We want to define hierarchy of sets indexed by ordinals:

$$\begin{split} V_0 &= \emptyset, \\ V_{\alpha+1} &= \mathcal{P} V_\alpha, \text{ if } \alpha \text{ is a succesor ordinal}, \\ V_\lambda &= \bigcup_{\beta < \lambda} V_\beta, \text{ if } \lambda \text{ is a limit ordinal}. \end{split}$$

7. Orderings and Ordinals 27/29

Regularity Axiom

Regularity (foundation) axiom

Every non-empty set A has a member m with $m \cap A = \emptyset$, that is,

$$\forall A \, [\, A \neq \emptyset \rightarrow \exists m \, (m \in A \land m \cap A = \emptyset) \,].$$

7. Orderings and Ordinals 28/29

References

Enderton, Herbert B. (1977). Elements of Set Theory. Academic Press (cit. on pp. 2, 14).

Hrbacek, Karel and Jech, Thomas [1978] (1999). Introduction to Set Theory. Third Edition, Revised and Expanded. Marcel Dekker (cit. on pp. 20, 21).

7. Orderings and Ordinals 29/29