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Preliminaries

Convention
The number assigned to chapters, examples, exercises, figures, sections, and theorems on these

slides correspond to the numbers assigned in the textbook [Enderton 1977].
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Defining the Natural Numbers

Approaches for introducing mathematical objects
@ Axiomatic

@ Definitional
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Defining the Natural Numbers

Approaches for introducing mathematical objects
@ Axiomatic

@ Definitional

Definitional approach for introducing natural numbers
@ We shall define natural numbers in terms of sets.

@ We shall prove the properties of natural numbers from properties of sets.
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Defining the Natural Numbers

Approaches for introducing mathematical objects
@ Axiomatic

@ Definitional

Definitional approach for introducing natural numbers
@ We shall define natural numbers in terms of sets.

@ We shall prove the properties of natural numbers from properties of sets.

Question
How to define natural numbers in terms of sets?
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Inductive Sets

von Neumann'’s construction

Informal idea: A natural number is the set of all smaller natural numbers
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0:=0,

1:={0} = {0},

2:={0,1} ={0,{0}}
3:={0,1,2} = {0,{0}, {0, {0}}},
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Inductive Sets

von Neumann'’s construction

Informal idea: A natural number is the set of all smaller natural numbers

0:=0,

1:={0}  ={0},

2:={0,1} ={0,{0}},
3:={0,1,2} = {0,{0},{0,{0}}},

Some ‘extra’ properties

lele2elde--- and 0C1C2C3C--.
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Inductive Sets

A wrong impredicative definition
n:={0,1,...,n—1}.

‘We cannot just say that a set n is a natural number if its elements are all the smaller natural
numbers, because such a “definition” would involve the very concept being defined.” [Hrbacek

and Jech (1978) 1999, p. 40]
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Inductive Sets

Definition

Let a be a set. The successor of « is

at :=aU{a}.
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Inductive Sets

Definition

Let a be a set. The successor of « is

Example
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at :=aU{a}.
0=10,
1=0",
92 — ®++7
3 = ®+++’
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Inductive Sets

Definition
A set A is inductive iff
e ) e A and

e if a € A then a™ € A.
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Inductive Sets

Definition
A set A is inductive iff
o ) e Aand
o ifa € Athena® € A.

Observation
An inductive is an infinite set.
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Inductive Sets

Definition
A set A is inductive iff
o ) e Aand
o ifa € Athena® € A.

Observation
An inductive is an infinite set.

Question
Are there inductive sets?
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Infinite Axiom

Infinity axiom

There exists an inductive set, that is,

JA[D € AAVa(a € A—aT € A)].
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The Set of Natural Numbers

Definition

A natural number is a set that belongs to every inductive set.
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The Set of Natural Numbers

Definition
A natural number is a set that belongs to every inductive set.

Theorem 4A
There is a set whose members are exactly the natural numbers.
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The Set of Natural Numbers

Definition

A natural number is a set that belongs to every inductive set.

Theorem 4A

There is a set whose members are exactly the natural numbers.

Proof.
Let A be an inductive set. By the subset axiom scheme, there is a set

{z € A|x € I for every inductive set [ }.
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The Set of Natural Numbers

Definition
The set of all natural numbers, denoted by w, is defined by

w:={x e A|x e I for every inductive set I }.

That is,
x €w iff ais a natural number.
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The Set of Natural Numbers

Theorem 4B
The set w is inductive, and it is a subset of every other inductive set.
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The Set of Natural Numbers

Theorem 4B
The set w is inductive, and it is a subset of every other inductive set.

Observation
The set w is the smallest inductive set
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The Set of Natural Numbers

Observation

Since that the collection of all inductive sets is not a set but a proper class, using class we could
define the set of natural numbers by

W= ﬂ{A | Ais an inductive set }.
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The Set of Natural Numbers

Observation

Since that the collection of all inductive sets is not a set but a proper class, using class we could
define the set of natural numbers by

W= ﬂ{A | Ais an inductive set }.

Observation

Mendelson [(1973) 2008] in the proof of Theorem ZFC 8 defines the set w as an intersection of
some inductive sets.
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Induction Principle for Natural Numbers

Induction principle for w (p. 69)

Any inductive subset of w coincides with w.
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Induction Principle for Natural Numbers

Induction principle for w (p. 69)

Any inductive subset of w coincides with w.

Induction principle for w (other version) [Hrbacek and Jech (1978) 1999]
Let P(x) be a property. Assume that

(i) P(0) holds,

(ii) for all n € w, P(n) implies P(n™).

Then P holds for all natural numbers n.

Proof.

‘This is an immediate consequence of our definition of w. The assumptions i) and ii) simple say
that theset A = {n € w | P(n) }is inductive. w C A follows." [Hrbacek and Jech (1978) 1999,
p. 42] [ |
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Defining Natural Numbers as Sets

Observation
So far, we defined natural numbers on terms of sets. A different point of view is stated by some

authors (see, e.g. Benacerraf [1965]).

4. Natural Numbers 25/49



Induction as Foundations

‘Thus inductive definibility is a notion intermediate in
strength between predicate and fully impredicative defin-
ability. It would be interesting to formulate a coherent
conceptual framework that made induction the principal
notion. There are suggestions of this in the literature,
but the possibility has not yet been fully explored. [Aczel
1977, p. 780]
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Transitive Sets

Definition
Let A be a set. The set A is a transitive set iff every member of a member of A is itself a
member of A, that is,

reac A implies x € A
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Transitive Sets

Definition

Let A be a set. The set A is a transitive set iff every member of a member of A is itself a
member of A, that is,

reac A implies x € A

Example
Whiteboard.
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Transitive Sets

Theorem
A set A is a transitive set iff | J A C A.

(continued on next slide)
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Transitive Sets

Proof.
i) (Only if) Let A be a transitive set. Then

zelJA=3b(@xebrbe A)
=zcA
i) (If) Let JA C A. Then

xGa/\aGA:mGUA

=xcA
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(by definition of UA)

(because A is transitive)

(by definition of UA)
(because UA Cc A
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Transitive Sets

Theorem
A set A is a transitive set iff a € A implies a C A.
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Transitive Sets

Theorem
A set A is a transitive set iff a € A implies a C A.

Proof.

i) (Only if) Let A be a transitive set and let a € A. If 2 € a implies © € A because A is
transitive.

i) (If) Let a € Aimpliesa C A. If x € aNa € A implies x € A because a C A.
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Transitive Sets

Theorem
A set A is a transitive set iff A C PA.
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Transitive Sets

On transitive sets

Let A be a set. Transitive sets can be defined using any of the followings equivalent affirmations:

(i) z € a € Aimplies z € A,
(i) UA C A4,
(iii) a € A implies a C A,
(iv) ACPA.
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Transitive Sets

Theorem 4E

If a is a transitive set, then (J(a™) = a.
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Transitive Sets

Theorem 4E

If a is a transitive set, then (J(a™) = a.

Theorem 4F

Every natural number is a transitive set.
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Transitive Sets

Theorem 4E

If a is a transitive set, then (J(a™) = a.

Theorem 4F
Every natural number is a transitive set.

Theorem 4G
The set w is a transitive set.
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Recursion on Natural Numbers

Recursion theorem on w (p. 73)

Let Abeaset,a€ Aand F': A— A. Then there exists a unique function A such that

h:w— A
h(0) = a,
h(n™) = F(h(n)), for alln € w.
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Arithmetic

Idea
We shall apply the recursion theorem to define addition and multiplication on w.
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Arithmetic

Example

We want to define the function

As i w — w

As(n) = addition of 5 to n.
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Arithmetic

Example

We want to define the function
As:w — w
As(n) = addition of 5 to n.
Let F':w — w :=n >+ nT. By the recursion theorem there exists a unique function

As:w —w
A5(0) = 5,
As(n™) = (A5(n))*.
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Arithmetic

Example

Let m € w. By the recursion theorem there exists a unique function

Ay iw—w
A (0) =m,
Am(n+) = (Am(n))+
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Arithmetic

Definition

Let m and n be natural numbers. We define the addition of m and n by

(H):wxw—w
m+n= An(n).
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Arithmetic

Theorem 4l
Let m and n be natural numbers. Then

m+0 =m,

m-+nt =(m+n)t.
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Arithmetic

Example

Let m € w. By the recursion theorem there exists a unique function

M, :w— w
M,,(0) =0,
My (nt) = My, (n) +m.
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Arithmetic

Definition

Let m and n be natural numbers. We define the multiplication of m and n by

():rwxw—w
m-n = Mp(n).
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Arithmetic

Theorem 4J
Let m and n be natural numbers. Then

mO =0,

m =(m-n)+m.
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Ordering on Natural Numbers

Strong induction principle for w (p. 87)

Let A be a subset of w, and assume that for every n in w,
m<n—meéeA implies nec A

Then A = w.
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