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Preliminaries
Convention
The number assigned to chapters, examples, exercises, figures, sections, and theorems on these
slides correspond to the numbers assigned in the textbook [Enderton 1977].

6. Cardinal Numbers and the Axiom of Choice 2/16



Equinumerosity
Observation
A one-to-one function from A onto B is called a one-to-one correspondence between A
and B.

Definition
A set A is equinumerous to a set B, denoted A ≈ B, iff there is a one-to-one correspondence
between A and B.

Example
Whiteboard.
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Equinumerosity

‘The possibility that whole and part may have the same
number of terms is, it must be confessed, shocking to
common-sense.’ [Russell 1903, p. 358]
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Equinumerosity
Theorem 6B(a)
The set ω is not equinumerous to the set R of real numbers.

6. Cardinal Numbers and the Axiom of Choice 7/16



Equinumerosity
Proof.
Let’s suppose ω ≈ R, that is, there is an one-to-one correspondence f : ω → R such that∗

f(0) = 236.001 . . . ,

f(1) = −7.777 . . . ,

f(2) = 3.1415 . . . ,

...

(continued on next slide)
∗‘We assume that a decimal expansion does not contain only the digit 9 from some place on, so each real

number has a unique decimal expansion.’ [Hrbacek and Jech (1978) 1999, Theorem 6.1, p. 90]
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Equinumerosity
Proof.
Let x = 0.d1d2d3 . . . ∈ R, where

dn+1 =
{

4, if f(n) ̸= 4;
5, if f(n) = 4.

The number x does not belong to the above enumeration. Therefore, R is non-enumerable.
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On Refutations of Cantor’s Diagonal Argument

‘I dedicate this essay to the two-dozen-odd people whose
refutations of Cantor’s diagonal argument have come to
me either as referee or as editor in the last twenty years
or so... A few years ago it occurred to me to wonder why
so many people devote so much energy to refuting this
harmless little argument—what had it done to make them
angry with it?... These pages report the results.’ [Hodges
1998, p. 1]
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Finite Sets
Definition
A set is finite iff it is equinumerous to some natural number. Otherwise it is infinite.

Corollary 6C
No finite set is equinumerous to a proper subset of itself.

Corollary 6D
(i) Any set equinumerous to a proper subset of itself is infinite.
(ii) The set ω is infinite.
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The Continuum Hypothesis
The continuum hypothesis (CH)
There is no a set whose cardinality is strictly between the cardinality of the set of the natural
numbers and the cardinality of the set of real numbers, that is,

2ℵ0 = ℵ1.

CH could not be disproved [Gödel 1938] nor proved [Cohen 1963] in ZFC, that is, CH is inde-
pendent of ZFC set theory.
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