CM0832 Elements of Set Theory 2. Axioms and Operations

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2017-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook [Enderton 1977].

2. Axioms and Operations 2/25

Extensionality Axiom

Extensionality axiom

If two sets have exactly the same members, then they are equal, that is,

$$\forall A \, \forall B \, [\, \forall x \, (x \in A \leftrightarrow x \in B) \to A = B \,].$$

2. Axioms and Operations 3/25

Extensionality Axiom

Extensionality axiom

If two sets have exactly the same members, then they are equal, that is,

$$\forall A \, \forall B \, [\, \forall x \, (x \in A \leftrightarrow x \in B) \to A = B \,].$$

Question

Have we any set? No, we haven't.

2. Axioms and Operations 4/25

Empty set axiom

There is a set having no members, that is,

$$\exists B \, \forall x \, (x \not\in B).$$

2. Axioms and Operations 5/25

Empty set axiom

There is a set having no members, that is,

$$\exists B \, \forall x \, (x \not\in B).$$

Observation

The empty set axiom is equivalent to

$$\exists B \, \forall x \, (x \in B \leftrightarrow x \neq x).$$

2. Axioms and Operations 6/25

Pairing axiom

For any sets u and v, there is a set having as members just u and v, that is,

$$\forall a \, \forall b \, \exists C \, \forall x \, (x \in C \leftrightarrow x = a \lor x = b).$$

2. Axioms and Operations 7/25

Union axiom (first version)

For any sets a and b, there is a set whose members are those sets belonging either to a or to b (or both), that is,

$$\forall a \, \forall b \, \exists B \, \forall x \, (x \in B \leftrightarrow x \in a \lor x \in b).$$

2. Axioms and Operations 8/25

Power set axiom

For any set a, there is a set whose members are exactly the subsets of a, that is,

$$\forall a \,\exists B \,\forall x \, (x \in B \leftrightarrow x \subseteq a),$$

where

$$u \subseteq v := \forall t (t \in u \to t \in v).$$

2. Axioms and Operations 9/25

Definitions from Set Abstraction

Observation

Recall that our set of non-logical symbols is $\mathfrak{L} = \{\epsilon\}$. When we add some definitions, we formally are changing this set (e.g. $\mathfrak{L} = \{\epsilon, \emptyset, \cup\}$). See, e.g. [Kunen (2011) 2013, § I.2], [Kunen (1980) 1992, § I.8 and § I.13] and [Suppes (1960) 1972, § 2.1] for how to add valid definitions and how to handle the new sets of non-logical symbols created by these definitions.

2. Axioms and Operations 10/25

Definitions from Set Abstraction

Definitions from the empty, pairing, union and power set axioms via set abstraction Let a, b, u and v be sets, then we define

```
 \emptyset := \{ x \mid x \neq x \}  (empty set),  \{u,v\} := \{ x \mid x = u \lor x = v \}  (pair set),  \{u\} := \{u,u\}  (singleton set),  a \cup b := \{ x \mid x \in a \lor x \in b \}  (union),  \mathcal{P}a := \{ x \mid x \subseteq a \}  (power set).
```

2. Axioms and Operations 11/25

Introduction

Whiteboard.

2. Axioms and Operations 12/25

Introduction

Whiteboard.

Subset axiom scheme (axiom scheme of comprehension/separation)

For any propositional function $\varphi(x)$, not containing B, the following is an axiom:

$$\forall c \,\exists B \,\forall x \, (x \in B \leftrightarrow x \in c \land \varphi(x)).$$

2. Axioms and Operations 13/25

Introduction

Whiteboard.

Subset axiom scheme (axiom scheme of comprehension/separation)

For any propositional function $\varphi(x)$, not containing B, the following is an axiom:

$$\forall c \,\exists B \,\forall x \, (x \in B \leftrightarrow x \in c \land \varphi(x)).$$

Observation

We stated an axiom scheme.

2. Axioms and Operations 14/25

Introduction

Whiteboard.

Subset axiom scheme (axiom scheme of comprehension/separation)

For any propositional function $\varphi(x)$, not containing B, the following is an axiom:

$$\forall c \,\exists B \,\forall x \, (x \in B \leftrightarrow x \in c \land \varphi(x)).$$

Observation

We stated an axiom scheme.

Abstraction from the subset axiom scheme

 $\{ x \in c \mid \varphi(x) \}$ is the set of all $x \in c$ satisfying the property φ .

2. Axioms and Operations 15/25

Observation

The propositional function φ can depend on other variables t_1, \ldots, t_k . In this case, we use $\varphi(x, t_1, \ldots, t_k)$ and we universally quantify on variables t_1, \ldots, t_k when using the axiom scheme.

2. Axioms and Operations 16/25

Observation

The propositional function φ can depend on other variables t_1, \ldots, t_k . In this case, we use $\varphi(x, t_1, \ldots, t_k)$ and we universally quantify on variables t_1, \ldots, t_k when using the axiom scheme.

Theorem 2A

There is no set to which every set belongs.

Proof

Whiteboard.

2. Axioms and Operations 17/25

Observation

The propositional function φ can depend on other variables t_1,\ldots,t_k . In this case, we use $\varphi(x,t_1,\ldots,t_k)$ and we universally quantify on variables t_1,\ldots,t_k when using the axiom scheme.

Theorem 2A

There is no set to which every set belongs.

Proof

Whiteboard.

Exercise

Why does the subset axiom scheme avoid the Berry paradox?

2. Axioms and Operations 18/25

Arbitrary Unions

Union axiom (final version)

For any set A, there exists a set B whose elements are exactly the members of the members of A, that is,

$$\forall A \,\exists B \,\forall x \,[\, x \in B \leftrightarrow \exists b \,(x \in b \land b \in A)\,].$$

2. Axioms and Operations 19/25

Arbitrary Unions

Definition

Let A be a set. The **union** $\bigcup A$ of A is defined by

$$\bigcup A := \{ x \mid \exists b (x \in b \land b \in A) \}.$$

Example (informal)

Let $A = \{\{2, 4, 6\}, \{6, 16, 26\}, \{0\}\}$, then

$$\bigcup A = \{0, 2, 4, 6, 16, 26\}.$$

Example

$$a \cup b = \bigcup \{a, b\}, \qquad \bigcup \{a\} = a, \qquad \bigcup \emptyset = \emptyset.$$

2. Axioms and Operations 20/25

Arbitrary Intersections

Theorem 2B

For any non-empty set A, there exists a unique set B such that for any x,

 $x \in B$ iff x belongs to every member of A.

2. Axioms and Operations 21/25

Arbitrary Intersections

Theorem 2B

For any non-empty set A, there exists a unique set B such that for any x,

 $x \in B$ iff x belongs to every member of A.

Definition

Let A be a non-empty set. The **intersecction** $\bigcap A$ of A can be defined by

$$\bigcap A := \{ x \mid \forall b \, (b \in A \to x \in b) \}, \text{ for } A \neq \emptyset.$$

2. Axioms and Operations 22/25

Algebra of Sets

Exercise 2.18

Assume that A and B are subsets of S. List all of the different sets that can be made from these three by use of the binary operations \cup , \cap , and -.

2. Axioms and Operations 23/25

Algebra of Sets

Exercise 2.18

Assume that A and B are subsets of S. List all of the different sets that can be made from these three by use of the binary operations \cup , \cap , and -.

The Venn diagram shows four possible regions for shading, that is, we have 2^4 different sets given by

$$\emptyset$$
, A , B , S , $A \cup B$, $A \cap B$, $A - B$, $B - A$, $A + B$, $S - A$, $S - B$, $S - (A \cup B)$, $S - (A \cap B)$, $S - (A - B)$, $S - (B - A)$ and $S - (A + B)$,

where the binary operation + is the **symmetric difference** defined by

$$A + B := (A - B) \cup (B - A)$$
$$= (A \cup B) - (A \cap B).$$

2. Axioms and Operations 24/25

References

Enderton, Herbert B. (1977). Elements of Set Theory. Academic Press (cit. on p. 2).

Kunen, Kenneth [1980] (1992). Set Theory. An Introduction to Independence Proofs. 5th impression. North-Holland (cit. on p. 10).

— [2011] (2013). Set Theory. Revised edition. Vol. 34. Mathematical Logic and Foundations. College Publications (cit. on p. 10).

Suppes, Patrick [1960] (1972). Axiomatic Set Theory. Corrected republication. Dover Publications (cit. on p. 10).

2. Axioms and Operations 25/25