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Pacto pedagogico

Como miembros de la Universidad EAFIT, nos comprometemos a actuar de manera integra
siguiendo los maés altos estandares éticos y morales.

@ Respeto

@ Tolerancia
@ Honradez
o

Compromiso
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Pacto pedagodgico

Pagina web del curso
https://asr.github.io/courses/cm0832-set-theory/2026-1/

CM0832 - MT5001 Elements of Set Theory 3/38


https://asr.github.io/courses/cm0832-set-theory/2026-1/

Pacto pedagodgico

Pagina web del curso
https://asr.github.io/courses/cm0832-set-theory/2026-1/

Conducto regular, fechas y porcentajes de las evaluaciones

La informacién esta en la pagina web del curso.
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Pacto pedagodgico

Pagina web del curso
https://asr.github.io/courses/cm0832-set-theory/2026-1/

Conducto regular, fechas y porcentajes de las evaluaciones

La informacién esta en la pagina web del curso.

Responsabilidad compartida
@ Profesor

@ Estudiantes
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Pacto pedagogico

Asistencia a clase
Reglamento académico de los programas de posgrado, Capitulo VI, Articulo 62, Paragrafo 2.

“El estudiante de posgrado cuyas faltas de asistencia lleguen al treinta por ciento
(30%) del total de las horas de clase programadas para el curso o para una parte
de éste, cuando se desarrolle con mas de un profesor, en secciones tematicas
denominadas ‘médulo’, pierde con calificacion de cero punto cero (0.0) del sem-
inario o curso correspondiente y esta nota afecta el promedio crédito acumulado.”
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Pacto pedagogico

Orientaciones para el curso
@ Se recomienda cuatro horas de trabajo por semana (dos horas por cada hora de clase).
@ Las clases son presenciales.
@ La evaluacién a la docencia es obligatoria.
°

Se recomienda revisar periédicamente los canales de comunicacién institucionales
(EAFIT Interactiva y el correo institucional).

El estudiante podra entrar a clase a mas tardar 20 minutos después de la hora asignada
para su inicio.
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Preliminaries

Textbook
Hrbacek and Jech ([1978] 1999). Introduction to Set Theory.

Convention
The numbers and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the textbook.
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Origins

Georg Cantor (1845 — 1918)f Cantor around 870

tFigures source: https://en.wikipedia.org/wiki/Georg_Cantor .
CMO0832 - MT5001 Elements of Set Theory 9/38


https://en.wikipedia.org/wiki/Georg_Cantor

Origins
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Springer Monographs in Mathematics

“Set theory was invented by Georg Can-
tor. .. It was however Cantor who realized the
significance of one-to-one functions between
sets and introduced the notion of cardinality
of a set.” (Jech [1978] 2006, p. 15)
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Origins
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@ Springer

Springer Monographs in Mathematics

“Set theory was born on that December 1873
day when Cantor established that the reals are
uncountable, i.e. there is no one-to-one cor-
respondence between the reals and the natural
numbers.” (Kanamori [1994] 2009, p. XII)
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Naive Set Theory

Observation
Cantor set theory is also called naive set theory.
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Naive Set Theory

Cantor’s set definition

“Unter einer Menge verstehen wir jede Zusammenfassung M von bestim-
mten wohlunterschiedenen Objecten m unsrer Anschauung oder unseres Denkens
(welche die Elemente von )M genannt werden) zu einem Ganzen.”

(Cantor 1895, p. 481)

“By an aggregate (Menge) we are to understand any collection into a whole M
of definite and separate objects m of our intuition or our thought. These objects
are called the elements of M.”

(Cantor [1915] 1955, p. 85)

“A set is a collection into a whole of definite, distinct objects of our intuition or
our thought. The objects are called elements (members) of the set.”
(Hrbacek and Jech [1978] 1999, p. 1)
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Naive Set Theory

Description

“Sets are not objects of the real world, like tables or stars; they are created by our
mind, not by our hands.. .. The human mind possesses the ability to abstract, to
think of a variety of different objects as being bound together by some common
property, and thus to form a set of objects having that property.”

(Hrbacek and Jech [1978] 1999, p. 1)
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Naive Set Theory

Problem
Implicit use of “theorems” on sets.

tFigure source: https://commons.wikimedia.org/w/index.php?curid=48219447 .
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Naive Set Theory

Problem
Implicit use of “theorems” on sets.

An example of such “theorem” was the use of axiom of choice illustrated by the figure.?

l—b-.

tFigure source: https://commons.wikimedia.org/w/index.php?curid=48219447 .
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Naive Set Theory

Problem
Implicit use of “theorems” on sets.

An example of such “theorem” was the use of axiom of choice illustrated by the figure.?

l—b-.

A very complete history of origins, development and influence of the axiom of choice is
in (Moore 1982).

tFigure source: https://commons.wikimedia.org/w/index.php?curid=48219447 .
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Naive Set Theory

Problem

Too general method of abstraction (i.e. axiom schema of unrestricted comprehension).
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Naive Set Theory

Problem
Too general method of abstraction (i.e. axiom schema of unrestricted comprehension).

Let P be an (unary) property then { z | P(z) } is a set.
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Naive Set Theory

Problem
Too general method of abstraction (i.e. axiom schema of unrestricted comprehension).

Let P be an (unary) property then {2 | P(z) } is a set.
What is an (unary) property?
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Naive Set Theory

Problem
Too general method of abstraction (i.e. axiom schema of unrestricted comprehension).

Let P be an (unary) property then {2 | P(z) } is a set.

What is an (unary) property?
This problem was the cause of Russell's paradox: Let R be a “set” defined by
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The Crisis in the Foundations of Mathematics

Logicism (Russell and Whitehead)
Paradoxes = Crisis = { Formalism  (Hilbert)

Intuitionism  (Brouwer)
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The Crisis in the Foundations of Mathematics

Logicism (Russell and Whitehead)

“The logicistic thesis is that mathematics is a branch of logic. The mathematical
notions are to be defined in terms of the logical notions. The theorems of math-
ematics are to be proved as theorems of logic.”

(Kleene [1952] 1974, p. 43)
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The Crisis in the Foundations of Mathematics

Formalism (Hilbert)

“Classical mathematics shall be formulated as a formal axiomatic theory, and this
theory shall be proved to be consistent, i.e. free from contradiction.”
(Kleene [1952] 1974, p. 53)
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The Crisis in the Foundations of Mathematics

Intuitionism (Brouwer)

“Intuitionism is based on the idea that mathematics is a creation of the mind.
The truth of a mathematical statement can only be conceived via a mental con-
struction that proves it to be true.”

(lemhoff 2024)
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Axiomatic Set Theory

Description

“We formulate some of the relatively simple properties of sets used by mathem-
aticians as axioms, and then take care to check that all theorems follow logically
from the axioms. Since the axioms are obviously true and the theorems logically
follow from them, the theorems are also true (not necessarily obviously). We end
up with a body of truths about sets which includes, among other things, the basic
properties of natural, rational, and real numbers, functions, orderings, etc., but
as far as is known, no contradictions.”

(Hrbacek and Jech [1978] 1999, p. 3)
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Axiomatic Set Theory

Axiomatic set theory as a fundational system for mathematics

@ “Our axioms provide a sufficient collection of assumptions for the development of the
whole of mathematics—a remarkable fact.” (Enderton 1977, p. 11)

o “Experience has shown that practically all notions used in contemporary mathematics
can be defined, and their mathematical properties derived, in this axiomatic system.
In this sense, the axiomatic set theory serves as a satisfactory foundations for the other
branches of mathematics.” (Hrbacek and Jech [1978] 1999, p. 3)

o “But why axiomatize set theory in the first place? Well, for one thing, it is well
known that set theory provides a unified framework for the whole of pure mathematics,
and surely if anything deserves to be put on a sound basis it is such a foundational
subject.” (Devlin [1979] 1993, p. 29)

e “Conventional mathematics is based on ZFC (the Zermelo-Fraenkel axioms, including
the Axiom of Choice). Working withing ZFC, on develops:. .. All the mathematics
found in basic texts on analysis, topology, algebra, etc.” (Kunen [2011] 2013, p. 1)

CM0832 - MT5001 Elements of Set Theory 27/38



Axiomatic Set Theory

Some axiomatic systems of set theory

Zermelo-Fraenkel set theory (ZF)
Zermelo-Fraenkel set theory with Choice (ZFC)
von Neumann-Bernays-Gédel set theory (NBG)
Morse-Kelley set theory (MK)
Tarski-Grothendieck set theory (TG)
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Axiomatic Set Theory

First-order theories
“The adjective ‘first-order’ is used to distinguish the languages we shall study here
from those in which there are predicates having other predicates or functions as
arguments or in which predicate quantifiers or function quantifiers are permitted,
or both.”
(Mendelson [1964] 2015, p. 53)
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Axiomatic Set Theory

First-order theories'
“The adjective ‘first-order’ is used to distinguish the languages we shall study here
from those in which there are predicates having other predicates or functions as
arguments or in which predicate quantifiers or function quantifiers are permitted,

or both.”
(Mendelson [1964] 2015, p. 53)

For an introduction to first-order languages and first-order theories, see e.g. (Hamilton 1978) or

(Mendelson [1964] 2015).
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Axiomatic Set Theory

Primitive notions
We only need two primitive notions, “set” and “member”.
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Axiomatic Set Theory

Primitive notions

We only need two primitive notions, “set” and “member”.

Non-logical symbols

In our formalisation of ZFC, the set of non-logical symbols is
£ ={e},

where € is a binary predicate (relation) symbol.
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Axiomatic Set Theory

But!

“On the other hand, we do not claim that every true fact about sets can be
derived from the axioms we present. The axiomatic system is not complete in
this sense,”

(Hrbacek and Jech [1978] 1999, p. 3)
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Foundations of Mathematics

Foundational systems

(i) Set theories (with additional axioms)
(ii
(iii
(iv
(v

Category theories
Type theories

Univalent foundations

~— —r N N

Homotopy type theories
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Foundations of Mathematics

Foundational systems!
(i) Set theories (with additional axioms)
(i)
(iif)
(iv)
)

(v) Homotopy type theories

Category theories
Type theories

Univalent foundations

fSee, e.g. (Centrone, Kant and Sarikaya 2019).
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