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Preliminaries

Textbook
Enderton (1977). Elements of Set Theory.

Convention
The numbers and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the textbook.
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Defining the Natural Numbers

Approaches for introducing mathematical objects
@ Axiomatic

@ Definitional
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Defining the Natural Numbers

Approaches for introducing mathematical objects
@ Axiomatic

@ Definitional

Definitional approach for introducing natural numbers
@ We shall define natural numbers in terms of sets.

@ We shall prove the properties of natural numbers from properties of sets.
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Defining the Natural Numbers

Approaches for introducing mathematical objects
@ Axiomatic

@ Definitional

Definitional approach for introducing natural numbers
@ We shall define natural numbers in terms of sets.

@ We shall prove the properties of natural numbers from properties of sets.

Question
How to define natural numbers in terms of sets?
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Inductive Sets

von Neumann'’s construction

Informal idea: A natural number is the set of all smaller natural numbers
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0:=10,

1:={0} = {0},

2:={0,1} ={0,{0}}
3:={0,1,2} = {0,{0}, {0, {0}}},
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Inductive Sets

von Neumann'’s construction

Informal idea: A natural number is the set of all smaller natural numbers

0:=0,

L:={0}  ={0},

2:={0,1} ={0,{0}},
3:={0,1,2} = {0,{0},{0,{0}}},

Some ‘extra’ properties

0cle2e3€--- and 0C1C2C3C -
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Inductive Sets

A wrong impredicative definition
n:={0,1,...,n—1}.

‘We cannot just say that a set n is a natural number if its elements are all the smal-
ler natural numbers, because such a “definition” would involve the very concept being

defined.” (Hrbacek and Jech [1978] 1999, p. 40)
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Inductive Sets

Definition
Let a be a set. The successor of « is

at:=aU{a}.
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Inductive Sets

Definition
Let a be a set. The successor of « is

Example
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at:=aU{a}.
0=10,
1=0",
9 — ®++7
3 = ®+++’
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Inductive Sets

Definition
A set A is inductive iff
e ) € A and

o if a € A then o™ € A.
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Inductive Sets

Definition
A set A is inductive iff
o ) e Aand
o ifa € Athena® € A.

Observation
An inductive is an infinite set.
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Inductive Sets

Definition
A set A is inductive iff
o ) e Aand
o ifa € Athena® € A.

Observation
An inductive is an infinite set.

Question
Are there inductive sets?
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Infinite Axiom

Infinity axiom

There exists an inductive set, that is,

JA[D € ANVa(a € A—aT € A)].
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The Set of Natural Numbers

Definition
A natural number is a set that belongs to every inductive set.
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The Set of Natural Numbers

Definition
A natural number is a set that belongs to every inductive set.

Theorem 4A
There is a set whose members are exactly the natural numbers.
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The Set of Natural Numbers

Definition

A natural number is a set that belongs to every inductive set.

Theorem 4A

There is a set whose members are exactly the natural numbers.

Proof.

Let A be an inductive set. By the subset axiom scheme, there is a set

{z € A|x €I for every inductive set [ }.
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The Set of Natural Numbers

Definition
The set of all natural numbers, denoted by w, is defined by

w:={x € A|x e I forevery inductive set I }.

That is,
x €w iff ais a natural number.
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The Set of Natural Numbers

Theorem 4B
The set w is inductive, and it is a subset of every other inductive set.
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The Set of Natural Numbers

Theorem 4B
The set w is inductive, and it is a subset of every other inductive set.

Observation
The set w is the smallest inductive set.
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The Set of Natural Numbers

Observation

Since that the collection of all inductive sets is not a set but a proper class, using class we
could define the set of natural numbers by

W= ﬂ{A | Ais an inductive set }.
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The Set of Natural Numbers

Observation

Since that the collection of all inductive sets is not a set but a proper class, using class we
could define the set of natural numbers by

W= ﬂ{A | Ais an inductive set }.

Observation

Mendelson ([1973] 2008) in the proof of Theorem ZFC 8 defines the set w as an intersection
of some inductive sets.
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Induction Principle for Natural Numbers

Induction principle for w (p. 69)

Any inductive subset of w coincides with w.
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Induction Principle for Natural Numbers

Induction principle for w (p. 69)

Any inductive subset of w coincides with w.

Induction principle for w (other version) (Hrbacek and Jech [1978] 1999)
Let P(xz) be a property. Assume that

(i) P(0) holds,

(ii) for all n € w, P(n) implies P(n™).

Then P holds for all natural numbers n.

Proof.

‘This is an immediate consequence of our definition of w. The assumptions i) and ii)
simple say that the set A = {n € w| P(n) } is inductive. w C A follows." (Hrbacek and
Jech [1978] 1999, p. 42) n
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Defining Natural Numbers as Sets

Observation
So far, we defined natural numbers on terms of sets. A different point of view is stated by

some authors (see, e.g. Benacerraf (1965)).
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Induction as Foundations

4. Natural Numbers

‘Thus inductive definibility is a notion intermediate
in strength between predicate and fully impredicative
definability. It would be interesting to formulate a co-
herent conceptual framework that made induction the
principal notion. There are suggestions of this in the
literature, but the possibility has not yet been fully ex-
plored. (Aczel 1977, p. 780)
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Transitive Sets

Definition

Let A be a set. The set A is a transitive set iff every member of a member of A is itself
a member of A4, that is,

reac A implies x € A
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Transitive Sets

Definition

Let A be a set. The set A is a transitive set iff every member of a member of A is itself
a member of A4, that is,

reac A implies x € A

Example
Whiteboard.
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Transitive Sets

Theorem
A set A is a transitive set iff | J A C A.

(continued on next slide)

4. Natural Numbers 29/49



Transitive Sets

Proof.
i) (Only if) Let A be a transitive set. Then

zelJA=3b(@ebrbe A)
=zcA
i) (If) Let JA C A. Then

an/\aGA:mGUA

=xcA
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(by definition of UA)

(because A is transitive)

(by definition of UA)
(because UA Cc A
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Transitive Sets

Theorem
A set A is a transitive set iff a € A implies a C A.
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Transitive Sets

Theorem
A set A is a transitive set iff a € A implies a C A.

Proof.

i) (Only if) Let A be a transitive set and let a € A. If 2 € a implies 2 € A because A
is transitive.

i) (If) Let a € A impliesa C A. If z € aAa € A implies 2 € A because a C A.
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Transitive Sets

Theorem
A set A is a transitive set iff A C PA.
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Transitive Sets

On transitive sets

Let A be a set. Transitive sets can be defined using any of the followings equivalent
affirmations:

(i) z € a € Aimplies z € A,
(i) UA C A4,
(iii) a € Aimplies a C A,
(iv) ACPA.

4. Natural Numbers 34/49



Transitive Sets

Theorem 4E

If a is a transitive set, then J(a™) = a.

4. Natural Numbers 35/49



Transitive Sets

Theorem 4E

If a is a transitive set, then J(a™) = a.

Theorem 4F

Every natural number is a transitive set.
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Transitive Sets

Theorem 4E

If a is a transitive set, then J(a™) = a.

Theorem 4F
Every natural number is a transitive set.

Theorem 4G
The set w is a transitive set.
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Recursion on Natural Numbers

Recursion theorem on w (p. 73)

Let Abeaset,a€ Aand F': A— A. Then there exists a unique function A such that

h:w— A
h(0) = a,
h(n™) = F(h(n)), for alln € w.
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Arithmetic

Idea
We shall apply the recursion theorem to define addition and multiplication on w.
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Arithmetic

Example

We want to define the function

As i w — w

As(n) = addition of 5 to n.
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Arithmetic

Example

We want to define the function
As:w — w
As(n) = addition of 5 to n.
Let F': w — w :=n+ n". By the recursion theorem there exists a unique function

As :w —w
A5(0) = 5,
As(n") = (A5(n))*.
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Arithmetic

Example

Let m € w. By the recursion theorem there exists a unique function

Ay iw—w
A (0) =m,
Am(n+) = (Am(n))+
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Arithmetic

Definition
Let m and n be natural numbers. We define the addition of m and n by

(+):wxw—w
m+n = An(n).
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Arithmetic

Theorem 4l
Let m and n be natural numbers. Then

m+0 =m,

m+nt=m+n)".
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Arithmetic

Example

Let m € w. By the recursion theorem there exists a unique function

M, :w—w
M,,(0) =0,
M (nt) = My, (n) +m.
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Arithmetic

Definition
Let m and n be natural numbers. We define the multiplication of m and n by

():rwxw—w
m-n = Mp(n).
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Arithmetic

Theorem 4J
Let m and n be natural numbers. Then

mO =0,

m =(m-n)+m.
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Ordering on Natural Numbers

Strong induction principle for w (p. 87)

Let A be a subset of w, and assume that for every n in w,
m<n—meéeA implies nec A.

Then A = w.
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