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Preliminaries
Textbook
Enderton (1977). Elements of Set Theory.

Convention
The numbers and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the textbook.
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Defining the Natural Numbers
Approaches for introducing mathematical objects

Axiomatic
Definitional

Definitional approach for introducing natural numbers
We shall define natural numbers in terms of sets.
We shall prove the properties of natural numbers from properties of sets.

Question
How to define natural numbers in terms of sets?
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Inductive Sets
von Neumann’s construction
Informal idea: A natural number is the set of all smaller natural numbers

0 := ∅,

1 := {0} = {∅},

2 := {0, 1} = {∅, {∅}},

3 := {0, 1, 2} = {∅, {∅}, {∅, {∅}}},

...

Some ‘extra’ properties

0 ∈ 1 ∈ 2 ∈ 3 ∈ · · · and 0 ⊆ 1 ⊆ 2 ⊆ 3 ⊆ · · · .
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Inductive Sets
A wrong impredicative definition

n := {0, 1, . . . , n − 1}.

‘We cannot just say that a set n is a natural number if its elements are all the smal-
ler natural numbers, because such a “definition” would involve the very concept being
defined.’ (Hrbacek and Jech [1978] 1999, p. 40)
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Inductive Sets
Definition
Let a be a set. The successor of a is

a+ := a ∪ {a}.

Example

0 = ∅,

1 = ∅+,

2 = ∅++,

3 = ∅+++,

...
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Inductive Sets
Definition
A set A is inductive iff

∅ ∈ A and
if a ∈ A then a+ ∈ A.

Observation
An inductive is an infinite set.

Question
Are there inductive sets?
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Infinite Axiom
Infinity axiom
There exists an inductive set, that is,

∃A [ ∅ ∈ A ∧ ∀a (a ∈ A → a+ ∈ A) ].
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The Set of Natural Numbers
Definition
A natural number is a set that belongs to every inductive set.

Theorem 4A
There is a set whose members are exactly the natural numbers.

Proof.
Let A be an inductive set. By the subset axiom scheme, there is a set

{ x ∈ A | x ∈ I for every inductive set I }.
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The Set of Natural Numbers
Definition
The set of all natural numbers, denoted by ω, is defined by

ω := { x ∈ A | x ∈ I for every inductive set I }.

That is,
x ∈ ω iff x is a natural number.

4. Natural Numbers 18/49



The Set of Natural Numbers
Theorem 4B
The set ω is inductive, and it is a subset of every other inductive set.

Observation
The set w is the smallest inductive set.
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The Set of Natural Numbers
Observation
Since that the collection of all inductive sets is not a set but a proper class, using class we
could define the set of natural numbers by

ω :=
⋂

{ A | A is an inductive set }.

Observation
Mendelson ([1973] 2008) in the proof of Theorem ZFC 8 defines the set ω as an intersection
of some inductive sets.
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Induction Principle for Natural Numbers
Induction principle for ω (p. 69)
Any inductive subset of ω coincides with ω.

Induction principle for ω (other version) (Hrbacek and Jech [1978] 1999)
Let P (x) be a property. Assume that
(i) P (0) holds,
(ii) for all n ∈ ω, P (n) implies P (n+).
Then P holds for all natural numbers n.

Proof.
‘This is an immediate consequence of our definition of w. The assumptions i) and ii)
simple say that the set A = { n ∈ ω | P (n) } is inductive. ω ⊆ A follows.’ (Hrbacek and
Jech [1978] 1999, p. 42)
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Defining Natural Numbers as Sets
Observation
So far, we defined natural numbers on terms of sets. A different point of view is stated by
some authors (see, e.g. Benacerraf (1965)).
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Induction as Foundations

‘Thus inductive definibility is a notion intermediate
in strength between predicate and fully impredicative
definability. It would be interesting to formulate a co-
herent conceptual framework that made induction the
principal notion. There are suggestions of this in the
literature, but the possibility has not yet been fully ex-
plored.’ (Aczel 1977, p. 780)

4. Natural Numbers 26/49



Transitive Sets
Definition
Let A be a set. The set A is a transitive set iff every member of a member of A is itself
a member of A, that is,

x ∈ a ∈ A implies x ∈ A.

Example
Whiteboard.
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Transitive Sets
Theorem
A set A is a transitive set iff

⋃
A ⊆ A.

(continued on next slide)
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Transitive Sets
Proof.

i) (Only if) Let A be a transitive set. Then

x ∈
⋃

A ⇒ ∃b (x ∈ b ∧ b ∈ A) (by definition of
⋃

A)
⇒ x ∈ A (because A is transitive)

ii) (If) Let
⋃

A ⊆ A. Then

x ∈ a ∧ a ∈ A ⇒ x ∈
⋃

A (by definition of
⋃

A)

⇒ x ∈ A (because
⋃

A ⊆ A)
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Transitive Sets
Theorem
A set A is a transitive set iff a ∈ A implies a ⊆ A.

Proof.
i) (Only if) Let A be a transitive set and let a ∈ A. If x ∈ a implies x ∈ A because A

is transitive.
ii) (If) Let a ∈ A implies a ⊆ A. If x ∈ a ∧ a ∈ A implies x ∈ A because a ⊆ A.
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Transitive Sets
Theorem
A set A is a transitive set iff A ⊆ PA.
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Transitive Sets
On transitive sets
Let A be a set. Transitive sets can be defined using any of the followings equivalent
affirmations:
(i) x ∈ a ∈ A implies x ∈ A,
(ii)

⋃
A ⊆ A,

(iii) a ∈ A implies a ⊆ A,
(iv) A ⊆ PA.
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Transitive Sets
Theorem 4E
If a is a transitive set, then

⋃
(a+) = a.

Theorem 4F
Every natural number is a transitive set.

Theorem 4G
The set ω is a transitive set.
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Transitive Sets
Theorem 4E
If a is a transitive set, then

⋃
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Transitive Sets
Theorem 4E
If a is a transitive set, then

⋃
(a+) = a.

Theorem 4F
Every natural number is a transitive set.

Theorem 4G
The set ω is a transitive set.
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Recursion on Natural Numbers
Recursion theorem on ω (p. 73)
Let A be a set, a ∈ A and F : A → A. Then there exists a unique function h such that

h : ω → A

h(0) = a,

h(n+) = F (h(n)), for all n ∈ ω.
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Arithmetic
Idea
We shall apply the recursion theorem to define addition and multiplication on ω.
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Arithmetic
Example
We want to define the function

A5 : w → w

A5(n) = addition of 5 to n.

Let F : ω → ω := n 7→ n+. By the recursion theorem there exists a unique function

A5 : w → w

A5(0) = 5,

A5(n+) = (A5(n))+.
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Arithmetic
Example
Let m ∈ ω. By the recursion theorem there exists a unique function

Am : w → w

Am(0) = m,

Am(n+) = (Am(n))+.
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Arithmetic
Definition
Let m and n be natural numbers. We define the addition of m and n by

(+) : w × w → w

m + n = Am(n).
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Arithmetic
Theorem 4I
Let m and n be natural numbers. Then

m + 0 = m,

m + n+ = (m + n)+.
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Arithmetic
Example
Let m ∈ ω. By the recursion theorem there exists a unique function

Mm : w → w

Mm(0) = 0,

Mm(n+) = Mm(n) + m.
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Arithmetic
Definition
Let m and n be natural numbers. We define the multiplication of m and n by

(·) : w × w → w

m · n = Mm(n).
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Arithmetic
Theorem 4J
Let m and n be natural numbers. Then

m · 0 = 0,

m · n+ = (m · n) + m.
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Ordering on Natural Numbers
Strong induction principle for ω (p. 87)
Let A be a subset of ω, and assume that for every n in ω,

m < n → m ∈ A implies n ∈ A.

Then A = ω.
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