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Notation
Logical constants
∧ (and) conjunction
∨ (or) inclusive† disjunction
→ (if , then ) conditional, material implication
¬ (not) negation
↔ (if and only if) bi-conditional, material equivalence
⊥ (falsity) bottom, falsum
∀x (for every x) universal quantifier
∃x (there exists a x) existential quantifier
∃!x (there exists one and only one x) unique existential quantifier
= (equal) equality, identity

†One or the other or both.
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Notation
Conventions
Sets will be denote by lowercase letters (a, b, . . .), uppercase letters (A, B, . . .), script letters
(A, B, . . .) and Greek letters (α, β, . . .).
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Origins

Georg Cantor (1845 – 1918)†
Cantor around 1870

†Figures source: https://en.wikipedia.org/wiki/Georg_Cantor .
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Origins

‘Set theory was invented by Georg Cantor. . . It
was however Cantor who realized the signi-
ficance of one-to-one functions between sets
and introduced the notion of cardinality of a
set.’ (Jech [1978] 2006, p. 15)
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Origins

‘Set theory was born on that December 1873
day when Cantor established that the reals are
uncountable, i.e. there is no one-to-one cor-
respondence between the reals and the natural
numbers.’ (Kanamori [1994] 2009, p. XII)
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Naive Set Theory
Observation
Cantor set theory is also called naive set theory.

Cantor’s set definition
‘By an aggregate (Menge) we are to understand any collection into a whole M of definite
and separate objects m of our intuition or our thought. These objects are called the
elements of M .’ (Cantor [1915] 1955, p. 85)
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Naive Set Theory
Membership relation (a binary relation)

t ∈ A means that t is a member of A

t ̸∈ A means that t is not a member of A and it is defined by

t ̸∈ A := ¬(t ∈ A).
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Naive Set Theory
Example (Introduction to the principle of extensionality)
The first examples of sets in (Enderton 1977) are the following sets:

1. The set whose members are the prime numbers less than 10.
2. The set of all solutions to the polynomial equation

x4 − 17x3 + 101x2 − 247x + 210 = 0.

Let’s call A and B the first and the second set, respectively. Note that

A = {2, 3, 5, 7} = B.
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Naive Set Theory
Principle of extensionality

If two sets have exactly the same members, then they are equal.

Let A and B two sets, for all x, if x ∈ A iff x ∈ B, then A = B.
∀A ∀B [ ∀x (x ∈ A ↔ x ∈ B) → A = B ].
Note that the converse

∀A ∀B [ A = B → ∀x (x ∈ A ↔ x ∈ B) ]

means something different.

1. Introduction 13/52



Naive Set Theory
Principle of extensionality

If two sets have exactly the same members, then they are equal.
Let A and B two sets, for all x, if x ∈ A iff x ∈ B, then A = B.

∀A ∀B [ ∀x (x ∈ A ↔ x ∈ B) → A = B ].
Note that the converse

∀A ∀B [ A = B → ∀x (x ∈ A ↔ x ∈ B) ]

means something different.

1. Introduction 14/52



Naive Set Theory
Principle of extensionality

If two sets have exactly the same members, then they are equal.
Let A and B two sets, for all x, if x ∈ A iff x ∈ B, then A = B.
∀A ∀B [ ∀x (x ∈ A ↔ x ∈ B) → A = B ].

Note that the converse

∀A ∀B [ A = B → ∀x (x ∈ A ↔ x ∈ B) ]

means something different.

1. Introduction 15/52



Naive Set Theory
Principle of extensionality

If two sets have exactly the same members, then they are equal.
Let A and B two sets, for all x, if x ∈ A iff x ∈ B, then A = B.
∀A ∀B [ ∀x (x ∈ A ↔ x ∈ B) → A = B ].
Note that the converse

∀A ∀B [ A = B → ∀x (x ∈ A ↔ x ∈ B) ]

means something different.

1. Introduction 16/52



Naive Set Theory
Empty set
The empty set, denoted by ∅, has no members.

By extensionality, the set ∅ is the only set without members.
We can define the empty set by

∅ := { x | x ̸= x }.

1. Introduction 17/52



Naive Set Theory
Empty set
The empty set, denoted by ∅, has no members.

By extensionality, the set ∅ is the only set without members.
We can define the empty set by

∅ := { x | x ̸= x }.

1. Introduction 18/52



Naive Set Theory
Pair set
Let x and y be objects. The pair set

{x, y}

is the set whose only elements are x and y.

Note that {x, y} = {y, x}.
Note that if x = y then {x, x} = {x}.
Note that ∅ ̸= {∅} because ∅ ∈ {∅} but ∅ ̸∈ ∅.

Generalisation. Let x1, . . . , xn be objects. We can define the set

{x1, . . . , xn}.

1. Introduction 19/52



Naive Set Theory
Pair set
Let x and y be objects. The pair set

{x, y}

is the set whose only elements are x and y.

Note that {x, y} = {y, x}.
Note that if x = y then {x, x} = {x}.
Note that ∅ ̸= {∅} because ∅ ∈ {∅} but ∅ ̸∈ ∅.

Generalisation. Let x1, . . . , xn be objects. We can define the set

{x1, . . . , xn}.

1. Introduction 20/52



Naive Set Theory
Pair set
Let x and y be objects. The pair set

{x, y}

is the set whose only elements are x and y.

Note that {x, y} = {y, x}.
Note that if x = y then {x, x} = {x}.
Note that ∅ ̸= {∅} because ∅ ∈ {∅} but ∅ ̸∈ ∅.

Generalisation. Let x1, . . . , xn be objects. We can define the set

{x1, . . . , xn}.

1. Introduction 21/52



Naive Set Theory
Unions
Let A and B two sets, the union of A and B is defined by

A ∪ B := { x | x ∈ A ∨ x ∈ B }.

Intersections
Let A and B two sets, the the intersection of A and B is defined by

A ∩ B := { x | x ∈ A ∧ x ∈ B }.

Disjoint sets
Two sets A and B are disjoint iff A ∩ B = ∅.
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Naive Set Theory
Subsets
Let A and B two sets. That the set A is subset of the set B is defined by

A ⊆ B := ∀x (x ∈ A → x ∈ B).

Note that A ⊆ A, for any set A.
Note that ∅ ⊆ A, for any set A.
The membership relation and the subset relation are different (e.g. ∅ ⊆ ∅ but ∅ ̸∈ ∅).
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Naive Set Theory
Power set
Let A be a set. The power set of A, denoted by PA, is the set of all subsets of A, that is,

PA := { x | x ⊆ A }.

Example

P∅ = ∅,

P{∅} = {∅, {∅}},

P{a, b} = {∅, {a}, {b}, {a, b}}.
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Naive Set Theory
Notation
Let A be a set. The cardinality of A is denoted by card A.

Theorem
If card A = n then card (PA) = 2n.
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Naive Set Theory
Problem
Implicit use of properties of sets.

An example of such properties was the axiom of choice as we shall see in the following
examples.

Illustration of the axiom of choice.†

†Figure source: https://commons.wikimedia.org/w/index.php?curid=48219447 .
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Naive Set Theory
Example

1. Recall that a real function (i.e. a real-valued function of a real variable) f is
continuous at a point p iff

f(x) = a and lim
x→p

= a.

2. Recall also that a real function f is sequentially continuous (or Heine-continuous) at
a point p iff for every sequence ⟨xn | n ∈ Z+⟩ converging to p, the sequence
⟨f(xn) | n ∈ Z+⟩ converges to f(p).

3. The proof that above definitions are equivalent (Heine 1872) requires the use of
axiom of choice.†

†See, e.g. (Moore 1982, p. 14) and (Hrbacek and Jech [1978] 1999, pp. 145-6).
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Naive Set Theory
Example
In measure theory, the proof that a set is not Lebesgue-measurable requires the use of the
axiom of choice (Solovay 1970).†

Video: https://www.youtube.com/watch?v=hcRZadc5KpI.‡

†See, also, (Moore 1982).
‡Thanks to our student Andrés Pérez-Coronado by pointing us out the video.
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Naive Set Theory
Problem
Too general method of abstraction (i.e. axiom schema of unrestricted comprehension)

Example (Russell’s paradox)
Whiteboard.
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Russell’s Paradox

Gottlob Frege (1848 – 1925) Bertrand Russell (1872 – 1970)
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Letter from Russell to van Heijenoort†

Penrhyndeudraeth, 23 November 1962
Dear Professor van Heijenoort,

As I think about acts of integrity and grace, I realise there is nothing in my knowledge
to compare with Frege’s dedication to truth. His entire life’s work was on the verge of
completion, much of his work had been ignored to the benefit of men infinitely less capable,
his second volume was about to be published, and upon finding that his fundamental
assumption was in error, he responded with intellectual pleasure clearly submerging any
feelings of personal disappointment. It was almost superhuman and a telling indication of
that of which men are capable if their dedication is to creative work and knowledge instead
of cruder efforts to dominate and be known.

Yours sincerely
Bertrand Russell

†van Heijenoort (1967, p. 127).
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Naive Set Theory
Problem
Too general method of abstraction (i.e. axiom schema of unrestricted comprehension)

Exercise
Which is the Berry paradox?
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Informally Building Sets
Definition
A set is pure iff its members are also sets.

Notation
In the following two figures, ω denotes the set of natural numbers and α denotes an ordinal
number greater than ω.
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Informally Building Sets†

Sets-An Informal View 7 

2. Show that no two o~e three sets 0, {0}, and {{0}} are equal to each 
other. 

3. Show that if B S; C, then f!J B S; f!Jc. 

4. Assume that x and yare members ofa set B. Show that {{x}, {x, y}} E f!Jf!JB. 

SETS-AN INFORMAL VIEW 

We are about to present a somewhat vague description of how sets are 
obtained. (The description will be repeated much later in precise form.) 
None of our later work will actually depend on this informal description, 
but we hope it will illuminate the motivation behind some of the things 
we will do. 

IX 

w 

o 

Fig.2. Vo is the set A of atoms. 

First we gather together all those things that are not themselves sets but 
that we want to have as members of sets. Call such things atoms. For 
example, if we want to be able to speak of the set of all two-headed 
coins, then we must include all such coins in our collection of atoms. 
Let A be the set of all atoms; it is the first set in our description. 

We now proceed to build up a hierarchy 

Vos; VlS; V
2

s;", 

of sets. At the bottom level (in a vertical arrangement as in Fig. 2) we take 
Vo = A, the set of atoms. the next level will also contain all sets of atoms: 

Vl = Vo u f!J Vo = A u f!J A. 

V0 := A (set of atoms)
Vn+1 := Vn ∪ PVn

...
Vω := V0 ∪ V1 ∪ · · ·

Vω+1 := Vω ∪ PVω

...
Vα+1 := Vα ∪ PVα

...

†Figure source: Enderton (1977, Fig. 2)
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Informally Building Sets

The ordinal numbers are the backbone of the universe of pure sets†

Sets-An Informal View 9 

is that the atoms serve no mathematically necessary purpose, so we banish 
them; we take A = 0. In so doing, we lose the ability to form sets of flowers 
or sets of people. But this is no cause for concern; we do not need set theory 
to talk about people and we do not need people in our set theory. But we 
definitely do want to have sets of numbers, e.g., {2, 3 + in}. Numbers do not 
appear at first glance to be sets. But as we shall discover (in Chapters 4 and 
5), we can find sets that serve perfectly well as numbers. 

Our theory then will ignore all objects that are not sets (as interesting 
and real as such objects may be). Instead we will concentrate just on "pure" 
sets that can be constructed without the use of such external objects. In 

1 
v. 1 

v., 

I 
Fig. 3. The ordinals are the backbone of the universe. 

particular, any member of one of our sets will itself be a set, and each of its 
members, if any, will be a set, and so forth. (This does not produce an 
infinite regress, because we stop when we reach 0.) 

Now that we have banished atoms, the picture becomes narrower 
(Fig. 3). The construction is also simplified. We have defined ~+1 to be 
J<. u £!l>V . Now it turns out that this is the same as A u £!l>V (see Exercise 

a a 
6). With A = 0, we have simply ~+1 = £!l>~. 

Exercises 

5. Define the rank of a set c to be the least IX such that c £ V . Compute 
the rank of {{0}}. Compute the rank of {0, {0}, {0, {0}}}. a 

6. We have stated that ~ + 1 = A u £!l> ~. Prove this at least for IX < 3. 

7. List all the members of V
3

• List all the members of V
4

• (It is to be 
assumed here that there are no atoms.) 

V0 := ∅ (no atoms)
Vn+1 := PVn

...
Vω := V0 ∪ V1 ∪ · · ·

Vω+1 := PVω

...
Vα+1 := PVα

...

†Figure source: Enderton (1977, Fig. 3)1. Introduction 41/52



Classes
Informal description
A set is a class, but some classes are too large to be a sets.

Example
The collection of all sets.

Observation
A class A is a set if A ⊆ Vα (i.e. A ∈ Vα+1) for some ordinal number α.
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Axiomatic Method
Some features

Axioms: Explicitly list of assumptions

Theorems: Logical consequences of the axioms
Property of set theory: It should be an axiom or a theorem
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Axiomatic Method
Axiomatic set theory as a fundational system for mathematics

‘Our axioms provide a sufficient collection of assumptions for the development of the
whole of mathematics—a remarkable fact.’ (Enderton 1977, p. 11)
‘Experience has shown that practically all notions used in contemporary mathematics
can be defined, and their mathematical properties derived, in this axiomatic system.
In this sense, the axiomatic set theory serves as a satisfactory foundations for the other
branches of mathematics.’ (Hrbacek and Jech [1978] 1999, p. 3)
‘But why axiomatize set theory in the first place? Well, for one thing, it is well
known that set theory provides a unified framework for the whole of pure mathematics,
and surely if anything deserves to be put on a sound basis it is such a foundational
subject.’ (Devlin [1979] 1993, p. 29)
‘Conventional mathematics is based on ZFC (the Zermelo-Fraenkel axioms, including
the Axiom of Choice). Working withing ZFC, on develops:. . . All the mathematics
found in basic texts on analysis, topology, algebra, etc.’ (Kunen [2011] 2013, p. 1)
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Axiomatic Method
Some axiomatic systems

Zermelo-Fraenkel set theory (ZF)
Zermelo-Fraenkel set theory with Choice (ZFC)
von Neumann-Bernays-Gödel set theory (NBG)
Morse-Kelley set theory (MK)
Tarski-Grothendieck set theory (TG)
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Axiomatic Method

First-Order Theories†

‘The adjective “first-order” is used to distinguish the languages we shall study here from
those in which there are predicates having other predicates or functions as arguments or
in which predicate quantifiers or function quantifiers are permitted, or both.’ (Mendelson
[1964] 2015, p. 53)

†For an introduction to first-order languages and first-order theories, see e.g. (Hamilton 1978) or
(Mendelson [1964] 2015).
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Axiomatic Method
Primitive notions
We only need two primitive notions, ‘set’ and ‘member’.

Non-logical symbols
In our formalisation of ZFC, the set of non-logical symbols is

L = {ϵ},

where ϵ is a binary predicate (relation) symbol.
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