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Administrative Information

Course web page
https://asr.github.io/courses/cm0832-set-theory/2017-2/

Exams, bibliography, etc.

See course web page.

Textbook
Enderton (1977). Elements of Set Theory.

Convention

The numbers and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the textbook.
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Notation

Logical constants

A (and)

vV (or)

—  (if —, then )
- (not)

< (if and only if)
L (falsity)

Va  (for every x)

dx (there exists a x)

dlz (there exists one and only one z)
(equal)

fOne or the other or both.
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conjunction

inclusive! disjunction

conditional, material implication
negation

bi-conditional, material equivalence
bottom, falsum

universal quantifier

existential quantifier

unique existential quantifier
equality, identity
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Notation

Conventions
Sets will be denote by lowercase letters (a, b, . ..), uppercase letters (A, B, ...), script letters

(A,B,...) and Greek letters (, 3,...).
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Origins

Georg Cantor (1845 — 1918)T Cantor around 870

Figures source: https://en.wikipedia.org/wiki/Georg_Cantor .
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Origins
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‘Set theory was invented by Georg Cantor. .. It
was however Cantor who realized the signi-
ficance of one-to-one functions between sets
and introduced the notion of cardinality of a
set.” (Jech [1978] 2006, p. 15)
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Origins

1. Introduction
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‘Set theory was born on that December 1873
day when Cantor established that the reals are
uncountable, i.e. there is no one-to-one cor-
respondence between the reals and the natural
numbers.” (Kanamori [1994] 2009, p. XII)
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Naive Set Theory

Observation
Cantor set theory is also called naive set theory.
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Naive Set Theory

Observation
Cantor set theory is also called naive set theory.

Cantor's set definition

‘By an aggregate (Menge) we are to understand any collection into a whole A/ of definite
and separate objects m of our intuition or our thought. These objects are called the
elements of M. (Cantor [1915] 1955, p. 85)
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Naive Set Theory

Membership relation (a binary relation)
@ t € A means that ¢ is a member of A

@ ¢ ¢ A means that ¢ is not a member of A and it is defined by

tg A:=~(te A).
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Naive Set Theory

Example (Introduction to the principle of extensionality)
The first examples of sets in (Enderton 1977) are the following sets:
1. The set whose members are the prime numbers less than 10.

2. The set of all solutions to the polynomial equation

2t — 1723 + 10122 — 2472 + 210 = 0.
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Naive Set Theory

Example (Introduction to the principle of extensionality)
The first examples of sets in (Enderton 1977) are the following sets:
1. The set whose members are the prime numbers less than 10.

2. The set of all solutions to the polynomial equation

2t — 1723 + 10122 — 2472 + 210 = 0.

Let's call A and B the first and the second set, respectively. Note that

A={2,357 =B.
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Naive Set Theory

Principle of extensionality

@ If two sets have exactly the same members, then they are equal.
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Naive Set Theory

Principle of extensionality
@ If two sets have exactly the same members, then they are equal.
o Let A and B two sets, for all z, if v € A iff x € B, then A = B.
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Naive Set Theory

Principle of extensionality
@ If two sets have exactly the same members, then they are equal.
o Let A and B two sets, for all z, if v € A iff x € B, then A = B.
e VAVB|[Vzx(r€e A<z € B)—» A= B]|.
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Naive Set Theory

Principle of extensionality
@ If two sets have exactly the same members, then they are equal.
o Let A and B two sets, for all z, if v € A iff x € B, then A = B.
e VAVB|[Vzx(r€e A<z € B)—» A= B]|.

@ Note that the converse
VAVB[A=B —»Vz(r € A<z € B)]

means something different.
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Naive Set Theory

Empty set
The empty set, denoted by (), has no members.
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Naive Set Theory

Empty set
The empty set, denoted by (), has no members.

@ By extensionality, the set () is the only set without members.

@ We can define the empty set by

0:={x|z#x}.
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Naive Set Theory

Pair set
Let x and y be objects. The pair set

{z,y}

is the set whose only elements are x and y.
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Naive Set Theory

Pair set
Let x and y be objects. The pair set

{z,y}

is the set whose only elements are x and y.
e Note that {z,y} = {y, z}.
e Note that if x = y then {z, 2} = {z}.
o Note that () # {0} because () € {0} but 0 & 0.
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Naive Set Theory

Pair set
Let x and y be objects. The pair set

{z,y}

is the set whose only elements are x and y.

e Note that {z,y} = {y, z}.
e Note that if x = y then {z, 2} = {z}.
o Note that () # {0} because () € {0} but 0 & 0.

Generalisation. Let x4, ..., x, be objects. We can define the set

{1'1, c. ,,Tn}.
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Naive Set Theory

Unions
Let A and B two sets, the union of A and B is defined by

AUB:={z|xe€ AVvz e B}.

Intersections
Let A and B two sets, the the intersection of A and B is defined by

ANB:={z|x€ ANz € B}.

Disjoint sets
Two sets A and B are disjoint iff AN B = ().

1. Introduction 22/52



Naive Set Theory

Subsets
Let A and B two sets. That the set A is subset of the set B is defined by

ACB:=Ve(r € A—x€B).
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Naive Set Theory

Subsets
Let A and B two sets. That the set A is subset of the set B is defined by

ACB:=Ve(r € A—x€B).

@ Note that A C A, for any set A.
@ Note that () C A, for any set A.
@ The membership relation and the subset relation are different (e.g. () C () but () & 0).
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Naive Set Theory

Power set
Let A be a set. The power set of A, denoted by P A, is the set of all subsets of A, that is,

PA:={xz|zCA}.
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Naive Set Theory

Power set
Let A be a set. The power set of A, denoted by P A, is the set of all subsets of A, that is,

PA:={z|zCA}

Example

PO — 0.
P{0} = {0,{0}},
P{av b} - {Q)? {a}v {b}, {a, b}}
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Naive Set Theory

Notation
Let A be a set. The cardinality of A is denoted by card A.
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Naive Set Theory

Notation
Let A be a set. The cardinality of A is denoted by card A.

Theorem
If card A = n then card (PA) = 2".

1. Introduction 28/52



Naive Set Theory

Problem
Implicit use of properties of sets.

Figure source: https://commons.wikimedia.org/w/index.php?curid=48219447 .
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Naive Set Theory

Problem
Implicit use of properties of sets.

An example of such properties was the axiom of choice as we shall see in the following

examples.

l—b-.

7@

[llustration of the axiom of choice.t

tFigure source: https://commons.wikimedia.org/w/index.php?curid=48219447 .
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Naive Set Theory

Example

1. Recall that a real function (i.e. a real-valued function of a real variable) f is
continuous at a point p iff
N lim — a.
f(z)=a and lim =a
2. Recall also that a real function f is sequentially continuous (or Heine-continuous) at

a point p iff for every sequence (z,, | n € Z") converging to p, the sequence
(f(zp) | n € Z™) converges to f(p).

3. The proof that above definitions are equivalent (Heine 1872) requires the use of
axiom of choice.f

See, e.g. (Moore 1982, p. 14) and (Hrbacek and Jech [1978] 1999, pp. 145-6).
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Naive Set Theory

Example
In measure theory, the proof that a set is not Lebesgue-measurable requires the use of the

axiom of choice (Solovay 1970).T

Video: https://www.youtube.com/watch?v=hcRZadc5KpI.*

fSee, also, (Moore 1982).
#Thanks to our student Andrés Pérez-Coronado by pointing us out the video.
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Naive Set Theory

Problem

Too general method of abstraction (i.e. axiom schema of unrestricted comprehension)
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Naive Set Theory

Problem
Too general method of abstraction (i.e. axiom schema of unrestricted comprehension)

Example (Russell's paradox)
Whiteboard.
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Russell's Paradox

Gottlob Frege (1848 — 1925) Bertrand Russell (1872 - 1970)
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Letter from Russell to van Heijenoort!

Penrhyndeudraeth, 23 November 1962
Dear Professor van Heijenoort,

As | think about acts of integrity and grace, | realise there is nothing in my knowledge
to compare with Frege's dedication to truth. His entire life’'s work was on the verge of
completion, much of his work had been ignored to the benefit of men infinitely less capable,
his second volume was about to be published, and upon finding that his fundamental
assumption was in error, he responded with intellectual pleasure clearly submerging any
feelings of personal disappointment. It was almost superhuman and a telling indication of
that of which men are capable if their dedication is to creative work and knowledge instead
of cruder efforts to dominate and be known.

Yours sincerely
Bertrand Russell

fvan Heijenoort (1967, p. 127).
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Naive Set Theory

Problem
Too general method of abstraction (i.e. axiom schema of unrestricted comprehension)

Exercise
Which is the Berry paradox?
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Informally Building Sets

Definition
A set is pure iff its members are also sets.
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Informally Building Sets

Definition
A set is pure iff its members are also sets.

Notation
In the following two figures, w denotes the set of natural numbers and « denotes an ordinal
number greater than w.
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Informally Building Sets'

tFigure source: Enderton (1977, Fig. 2)

1. Introduction

Vo
Vn+1

Vw+1

Va+1

:= A (set of atoms)
=V, UPV,

=V, UPV,

= Vo, UPV,
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Informally Building Sets

The ordinal numbers are the backbone of the universe of pure sets!

Vo := 0 (no atoms)
Vn+1 — PVn

Vo =VWuWiu
Vw+l = PVW
Va+1 =PVy

"Figure source: Enderton (1977, Fig. 3) 41/52
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Classes

Informal description

A set is a class, but some classes are too large to be a sets.

Example

The collection of all sets.

Observation
A class Ais asetif ACV, (i.e. A€ V,41) for some ordinal number .
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Axiomatic Method

Some features
@ Axioms: Explicitly list of assumptions
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Axiomatic Method

Some features
@ Axioms: Explicitly list of assumptions

@ Theorems: Logical consequences of the axioms
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Axiomatic Method

Some features
@ Axioms: Explicitly list of assumptions
@ Theorems: Logical consequences of the axioms

@ Property of set theory: It should be an axiom or a theorem
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Axiomatic Method

Axiomatic set theory as a fundational system for mathematics

@ ‘Our axioms provide a sufficient collection of assumptions for the development of the
whole of mathematics—a remarkable fact. (Enderton 1977, p. 11)

@ ‘Experience has shown that practically all notions used in contemporary mathematics
can be defined, and their mathematical properties derived, in this axiomatic system.
In this sense, the axiomatic set theory serves as a satisfactory foundations for the other
branches of mathematics. (Hrbacek and Jech [1978] 1999, p. 3)

@ ‘But why axiomatize set theory in the first place? Well, for one thing, it is well
known that set theory provides a unified framework for the whole of pure mathematics,
and surely if anything deserves to be put on a sound basis it is such a foundational
subject.” (Devlin [1979] 1993, p. 29)

@ ‘Conventional mathematics is based on ZFC (the Zermelo-Fraenkel axioms, including
the Axiom of Choice). Working withing ZFC, on develops:...All the mathematics
found in basic texts on analysis, topology, algebra, etc.’ (Kunen [2011] 2013, p. 1)

1. Introduction
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Axiomatic Method

Some axiomatic systems

Zermelo-Fraenkel set theory (ZF)
Zermelo-Fraenkel set theory with Choice (ZFC)
von Neumann-Bernays-Gédel set theory (NBG)
Morse-Kelley set theory (MK)
Tarski-Grothendieck set theory (TG)
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Axiomatic Method

First-Order Theories'

‘The adjective "first-order” is used to distinguish the languages we shall study here from
those in which there are predicates having other predicates or functions as arguments or
in which predicate quantifiers or function quantifiers are permitted, or both. (Mendelson
[1964] 2015, p. 53)

tFor an introduction to first-order languages and first-order theories, see e.g. (Hamilton 1978) or
(Mendelson [1964] 2015).
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Axiomatic Method

Primitive notions
We only need two primitive notions, ‘set’ and ‘member’.
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Axiomatic Method

Primitive notions

We only need two primitive notions, ‘set’ and ‘member’.

Non-logical symbols

In our formalisation of ZFC, the set of non-logical symbols is

£=A{e},

where ¢ is a binary predicate (relation) symbol.
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