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Preliminaries

Textbook
Enderton (1977). Elements of Set Theory.

Convention
The numbers and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the textbook.
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Equinumerosity

Observation
A one-to-one function from A onto B is called a one-to-one correspondence between A

and B.

6. Cardinal Numbers and the Axiom of Choice 3/16



Equinumerosity

Observation
A one-to-one function from A onto B is called a one-to-one correspondence between A
and B.

Definition
A set A is equinumerous to a set 3, denoted A =~ B, iff there is a one-to-one correspond-
ence between A and B.
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Equinumerosity

Observation
A one-to-one function from A onto B is called a one-to-one correspondence between A
and B.

Definition
A set A is equinumerous to a set 3, denoted A =~ B, iff there is a one-to-one correspond-
ence between A and B.

Example
Whiteboard.
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Equinumerosity

‘The possibility that whole and part may have the same
number of terms is, it must be confessed, shocking to
common-sense.” (Russell 1903, p. 358)

6. Cardinal Numbers and the Axiom of Choice 6/16



Equinumerosity

Theorem 6B(a)

The set w is not equinumerous to the set R of real numbers.
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Equinumerosity

Proof.

Let's suppose w ~ IR, that is, there is an one-to-one correspondence f : w — R such thatf

£(0) = 236.001.. .,
) = —7.777. .,
f(2) =3.1415.. .,

(continued on next slide)

t“We assume that a decimal expansion does not contain only the digit 9 from some place on, so each
real number has a unique decimal expansion.” (Hrbacek and Jech [1978] 1999, Theorem 6.1, p. 90)
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Equinumerosity

Proof.
Let x = 0.d1dads ... € R, where

dor = 4, if f(n) # 4;
"5, if f(n) = 4.

The number = does not belong to the above enumeration. Therefore, R is non-enumerable.
|
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On Refutations of Cantor’'s Diagonal Argument

6. Cardinal Numbers and the Axiom of Choice

‘I dedicate this essay to the two-dozen-odd people
whose refutations of Cantor’s diagonal argument have
come to me either as referee or as editor in the last
twenty years or so... A few years ago it occurred to me
to wonder why so many people devote so much energy
to refuting this harmless little argument—what had it
done to make them angry with it?... These pages re-
port the results.” (Hodges 1998, p. 1)
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Finite Sets

Definition
A set is finite iff it is equinumerous to some natural number. Otherwise it is infinite.

6. Cardinal Numbers and the Axiom of Choice 11/16



Finite Sets

Definition
A set is finite iff it is equinumerous to some natural number. Otherwise it is infinite.

Corollary 6C

No finite set is equinumerous to a proper subset of itself.
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Finite Sets

Definition
A set is finite iff it is equinumerous to some natural number. Otherwise it is infinite.

Corollary 6C
No finite set is equinumerous to a proper subset of itself.

Corollary 6D
(i) Any set equinumerous to a proper subset of itself is infinite.
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Finite Sets

Definition
A set is finite iff it is equinumerous to some natural number. Otherwise it is infinite.

Corollary 6C
No finite set is equinumerous to a proper subset of itself.

Corollary 6D
(i) Any set equinumerous to a proper subset of itself is infinite.

(i) The set w is infinite.
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The Continuum Hypothesis

The continuum hypothesis (CH)

There is no a set whose cardinality is strictly between the cardinality of the set of the
natural numbers and the cardinality of the set of real numbers, that is,

Mo — .

CH could not be disproved (Godel 1938) nor proved (Cohen 1963) in ZFC, that is, CH is
independent of ZFC set theory.
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