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Preliminaries
Conventions

▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman (1979) 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2, … }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫𝐴.
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Reductions
Definition
Let 𝑃1 and 𝑃2 be two problems. A reduction from 𝑃1 to 𝑃2 is a Turing machine that takes an
instance of 𝑃1 written on its tape and halts with an instance of 𝑃2 that have the same answer
(i.e. a reduction is an algorithm).
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Reductions
Theorem 9.7
If there is a reduction from 𝑃1 to 𝑃2 then:
(i) if 𝑃1 is undecidable then so 𝑃2,

(ii) if 𝑃1 is not recursively enumerable then so 𝑃2.

Proof
Hint: Suppose the 𝑃2 is decidable/recursively enumerable and find a contradiction.
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Turing Machines that Accept the Empty Language
Notation
Henceforth, we’ll regard strings as the Turing machines they represent.

Two languages
Let Σ = {0, 1}. Then

Le ≔ { 𝑀 ∈ Σ∗ ∣ L(𝑀) = ∅ },
Lne ≔ { 𝑀 ∈ Σ∗ ∣ L(𝑀) ≠ ∅ }.
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Turing Machines that Accept the Empty Language
Theorem 9.8
The language Lne is recursively enumerable.

Proof
Construction of a non-determinist Turing machine to accept Lne:†

†Figure from Hopcroft, Motwani and Ullman [(1979) 2007, Fig. 9.8].
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Turing Machines that Accept the Empty Language
Theorem 9.9
The language Lne is not recursive.
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Turing Machines that Accept the Empty Language
Proof

1. Reduction from Lu to Lne where the pair (𝑀, 𝑤) is converted in 𝑀 ′, such that
𝑤 ∈ L(𝑀) iff L(𝑀 ′) ≠ ∅.

2. The key is that 𝑀 ′ ignores its input.†

3. Lne is not recursive by Theorem 9.7.

†Figure from Hopcroft, Motwani and Ullman [(1979) 2007, Fig. 9.9].
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Turing Machines that Accept the Empty Language
Theorem 9.10
The language Le is not recursively enumerable.

Proof
Hint: The language Le is the complement of the language Lne.
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Rice’s Theorem
Definition
The set of the recursively enumerable languages, denoted RE, is the set

RE ≔ { 𝐿 ⊆ Σ∗ ∣ 𝐿 is a recursively enumerable language }.
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Rice’s Theorem
Definition
A property 𝑃 of the recursively enumerable languages is a subset of RE, that is, 𝑃 ⊆ RE.

Example
▶ 𝑃 (𝐿): 𝐿 is a language regular.
▶ 𝑃 (𝐿): 𝐿 is finite.
▶ Trivial properties: 𝑃(𝐿) = ∅ or 𝑃(𝐿) = RE.
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Rice’s Theorem
Theorem 9.11 (Rice’s theorem, first version)
Every non-trivial property of RE is undecidable [Rice 1953].

How to prove Rice’s theorem?
We identify a property 𝑃 by the Turing machines 𝑀 such that L(𝑀) ∈ 𝑃 .

Theorem (Rice’s theorem, second version)
If 𝑃 ⊆ RE is a non-trivial property then

𝐿𝑃 ≔ { 𝑀 ∈ Σ∗ ∣ L(𝑀) ∈ 𝑃 }

is undecidable.
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Rice’s Theorem
Proof
Case ∅ ∉ 𝑃 .

1. Let 𝐿 be a language and 𝑀𝐿 be a Turing machine such 𝐿 ≠ ∅, 𝐿 ∈ 𝑃 and 𝐿 = L(𝑀𝐿).
Reduction from Lu to 𝐿𝑃 where the pair (𝑀, 𝑤) is converted in 𝑀 ′ such that:†
(i) L(𝑀 ′) = ∅ (i.e. 𝑀 ′ ∉ 𝐿𝑃 ) if 𝑤 ∉ L(𝑀) and
(ii) L(𝑀 ′) = 𝐿 (i.e. 𝑀 ′ ∈ 𝐿𝑃 ) if 𝑤 ∈ L(𝑀).

2. 𝐿𝑃 is not recursive by Theorem 9.7.a.

†Figure from Hopcroft, Motwani and Ullman [(1979) 2007, Fig. 9.10].
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Rice’s Theorem
Proof (continuation)
Case ∅ ∈ 𝑃 .

1. By the previous case, 𝑃 is undecidable, i.e. 𝐿𝑃 is undecidable.
2. 𝐿𝑃 = 𝐿𝑃 .
3. Suppose 𝐿𝑃 is decidable then 𝐿𝑃 would be also decidable (contradiction).
4. Therefore, 𝐿𝑃 is undecidable.
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Rice’s Theorem
Observation
All problems about Turing machines that involve only the language that the Turing machine
accepts are undecidable.

Examples
▶ Is the language accepted by the Turing machine empty? Is it finite? Is it regular? Is it

context-free?
▶ Does the language accepted by the Turing machine contain the string ‘hello world’? Does

it contain all the even numbers?
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Rice’s Theorem
Observation
Rice’s theorem does not imply that everything about Turing machines is undecidable.

Example
It is decidable if a Turing machine has five states.

Rice’s Theorem 30/32



Rice’s Theorem
Observation
Rice’s theorem does not imply that everything about Turing machines is undecidable.

Example
It is decidable if a Turing machine has five states.

Rice’s Theorem 31/32



References
Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory,
Languages, and Computation. 3rd ed. Pearson Education (cit. on pp. 2, 8, 9, 11–13, 24–26).
Rice, H. G. (1953). Classes of Recursively Enumerable Sets and Their Decision Problems. Transac-
tions of the American Mathematical Society 74.2, pp. 358–366. doi: 10.1090/S0002-9947-1953-
0053041-6 (cit. on pp. 21–23).

References 32/32

https://doi.org/10.1090/S0002-9947-1953-0053041-6
https://doi.org/10.1090/S0002-9947-1953-0053041-6

	Preliminaries
	Reductions
	Turing Machines that Accept the Empty Language
	Rice's Theorem
	References

