
CM0081 Formal Languages and Automata
§ 3.1 Regular Expressions

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1

1/48



Preliminaries
Conventions
▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,

sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman (1979) 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2,… }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫𝐴.

Preliminaries 2/48



Introduction: Description of regular languages

(𝟎𝟏)(𝟎𝟏)∗ + (𝟎𝟏𝟎)(𝟎𝟏𝟎)∗
𝑞0

start

𝑞1 𝑞2

𝑞3 𝑞4 𝑞5

0

0

1
0

1 0

0

Algebraic description Machine-like description

Introduction 3/48



Introduction: Regular Expressions
Features
▶ Algebraic description of regular languages

▶ Declarative (‘user-friendly’) way to express the strings that belong to the language

Uses
▶ Search commands (e.g. Grep)
▶ Lexical-analyzer generators (e.g. Lex and Alex)
▶ Domain specific languages (DSLs)

Introduction 4/48



Introduction: Regular Expressions
Features
▶ Algebraic description of regular languages
▶ Declarative (‘user-friendly’) way to express the strings that belong to the language

Uses
▶ Search commands (e.g. Grep)
▶ Lexical-analyzer generators (e.g. Lex and Alex)
▶ Domain specific languages (DSLs)

Introduction 5/48



Introduction: Regular Expressions
Features
▶ Algebraic description of regular languages
▶ Declarative (‘user-friendly’) way to express the strings that belong to the language

Uses
▶ Search commands (e.g. Grep)

▶ Lexical-analyzer generators (e.g. Lex and Alex)
▶ Domain specific languages (DSLs)

Introduction 6/48



Introduction: Regular Expressions
Features
▶ Algebraic description of regular languages
▶ Declarative (‘user-friendly’) way to express the strings that belong to the language

Uses
▶ Search commands (e.g. Grep)
▶ Lexical-analyzer generators (e.g. Lex and Alex)

▶ Domain specific languages (DSLs)

Introduction 7/48



Introduction: Regular Expressions
Features
▶ Algebraic description of regular languages
▶ Declarative (‘user-friendly’) way to express the strings that belong to the language

Uses
▶ Search commands (e.g. Grep)
▶ Lexical-analyzer generators (e.g. Lex and Alex)
▶ Domain specific languages (DSLs)

Introduction 8/48



Operations on Languages
Notation
The power set of a set 𝐴 is denoted 𝒫𝐴.

Operations on Languages 9/48



Operations on Languages
Definition
Let 𝐿, 𝐿1 and 𝐿2 be languages on an alphabet Σ.

(i) Union of languages:

∪ ∶ 𝒫Σ∗ ×𝒫Σ∗ → 𝒫Σ∗

𝐿1 ∪ 𝐿2 ≔ {𝑥 ∣ 𝑥 ∈ 𝐿1 or 𝑥 ∈ 𝐿2 }.

(ii) Concatenation of languages:

· ∶ 𝒫Σ∗ ×𝒫Σ∗ → 𝒫Σ∗

𝐿1 · 𝐿2 ≔ {𝑥 · 𝑦 ∣ 𝑥 ∈ 𝐿1 and 𝑦 ∈ 𝐿2 }.

(iii) Powers of a language:

(−)(−) ∶ 𝒫Σ∗ ×ℕ → 𝒫Σ∗

𝐿0 ≔ {𝜀},
𝐿𝑛+1 ≔ 𝐿 · 𝐿𝑛.

(iv) Kleene closure of a language:

(−)∗ ∶ 𝒫Σ∗ → 𝒫Σ∗

𝐿∗ ≔ ⋃
𝑛≥0

𝐿𝑛.

Operations on Languages 10/48



Operations on Languages
Examples
▶ If 𝐿 = {0, 1}, then 𝐿∗ consists of all strings of 0’s and 1’s and the empty word.

▶ If 𝐿 = {0𝑛 ∣ 𝑛 ≥ 1 }, then 𝐿∗ = 𝐿 ∪ {𝜀}.
▶ If 𝐿 = {0, 11}, then 𝐿∗ consists of the empty word and those strings of 0’s and 1’s such

that the 1’s come in pairs.
▶ Powers on ∅

∅0 = {𝜀},
∅𝑖 = ∅, for 𝑖 ≥ 1,
∅∗ = {𝜀}.

Operations on Languages 11/48



Operations on Languages
Examples
▶ If 𝐿 = {0, 1}, then 𝐿∗ consists of all strings of 0’s and 1’s and the empty word.
▶ If 𝐿 = {0𝑛 ∣ 𝑛 ≥ 1 }, then 𝐿∗ = 𝐿 ∪ {𝜀}.

▶ If 𝐿 = {0, 11}, then 𝐿∗ consists of the empty word and those strings of 0’s and 1’s such
that the 1’s come in pairs.

▶ Powers on ∅

∅0 = {𝜀},
∅𝑖 = ∅, for 𝑖 ≥ 1,
∅∗ = {𝜀}.

Operations on Languages 12/48



Operations on Languages
Examples
▶ If 𝐿 = {0, 1}, then 𝐿∗ consists of all strings of 0’s and 1’s and the empty word.
▶ If 𝐿 = {0𝑛 ∣ 𝑛 ≥ 1 }, then 𝐿∗ = 𝐿 ∪ {𝜀}.
▶ If 𝐿 = {0, 11}, then 𝐿∗ consists of the empty word and those strings of 0’s and 1’s such

that the 1’s come in pairs.

▶ Powers on ∅

∅0 = {𝜀},
∅𝑖 = ∅, for 𝑖 ≥ 1,
∅∗ = {𝜀}.

Operations on Languages 13/48



Operations on Languages
Examples
▶ If 𝐿 = {0, 1}, then 𝐿∗ consists of all strings of 0’s and 1’s and the empty word.
▶ If 𝐿 = {0𝑛 ∣ 𝑛 ≥ 1 }, then 𝐿∗ = 𝐿 ∪ {𝜀}.
▶ If 𝐿 = {0, 11}, then 𝐿∗ consists of the empty word and those strings of 0’s and 1’s such

that the 1’s come in pairs.
▶ Powers on ∅

∅0 = {𝜀},
∅𝑖 = ∅, for 𝑖 ≥ 1,
∅∗ = {𝜀}.

Operations on Languages 14/48



What the Regular Expressions Are
Definition
Let Σ be an alphabet. The regular expressions (regex’s) on Σ are inductively defined by:

▶ Basis step
(i) 𝜀 is a regex,
(ii) ∅ is regex and
(iii) If 𝑎 ∈ Σ then 𝒂 is a regex.

▶ Inductive step
If 𝐸 and 𝐹 are regex’s then
(i) 𝐸 + 𝐹 is a regex,
(ii) 𝐸 · 𝐹 is a regex,
(iii) 𝐸∗ is a regex and
(iv) (𝐸) is a regex.

What the Regular Expressions Are 15/48



What the Regular Expressions Are
Definition
Let Σ be an alphabet. The regular expressions (regex’s) on Σ are inductively defined by:

▶ Basis step
(i) 𝜀 is a regex,
(ii) ∅ is regex and
(iii) If 𝑎 ∈ Σ then 𝒂 is a regex.

▶ Inductive step
If 𝐸 and 𝐹 are regex’s then
(i) 𝐸 + 𝐹 is a regex,
(ii) 𝐸 · 𝐹 is a regex,
(iii) 𝐸∗ is a regex and
(iv) (𝐸) is a regex.

What the Regular Expressions Are 16/48



What the Regular Expressions Are
Definition
Let Σ be an alphabet. The regular expressions (regex’s) on Σ are inductively defined by:

▶ Basis step
(i) 𝜀 is a regex,
(ii) ∅ is regex and
(iii) If 𝑎 ∈ Σ then 𝒂 is a regex.

▶ Inductive step
If 𝐸 and 𝐹 are regex’s then
(i) 𝐸 + 𝐹 is a regex,
(ii) 𝐸 · 𝐹 is a regex,
(iii) 𝐸∗ is a regex and
(iv) (𝐸) is a regex.

What the Regular Expressions Are 17/48



Precedence of Operators
Order of precedence and associative
Precedence from highest to lowest: (), ∗, · and +.
Associative: The operators · and + are left-associative.

Example

𝟎𝟏∗ + 𝟏 = (𝟎(𝟏∗)) + 𝟏
≠ (𝟎𝟏)∗ + 𝟏
≠ 𝟎(𝟏∗ + 𝟏)

What the Regular Expressions Are 18/48



Precedence of Operators
Order of precedence and associative
Precedence from highest to lowest: (), ∗, · and +.
Associative: The operators · and + are left-associative.

Example

𝟎𝟏∗ + 𝟏 = (𝟎(𝟏∗)) + 𝟏
≠ (𝟎𝟏)∗ + 𝟏
≠ 𝟎(𝟏∗ + 𝟏)

What the Regular Expressions Are 19/48



Languages Denoted by Regular Expressions
Definition
Let 𝐸 be a regular expression. The language denoted by 𝐸, denoted by L(𝐸), is inductively
defined by:

▶ Basis step

L(𝜀) ≔ {𝜀},
L(∅) ≔ ∅,
L(𝒂) ≔ {𝑎}.

▶ Inductive step
Let L(𝐸) and L(𝐹) be the languages denoted by the regular
expressions 𝐸 and 𝐹 , then

L(𝐸 + 𝐹) ≔ L(𝐸) ∪ L(𝐹),
L(𝐸 · 𝐹) ≔ L(𝐸) · L(𝐹),

L(𝐸∗) ≔ (L(𝐸))∗,
L((𝐸)) ≔ L(𝐸).

Languages Denoted by Regular Expressions 20/48



Languages Denoted by Regular Expressions
Definition
Let 𝐸 be a regular expression. The language denoted by 𝐸, denoted by L(𝐸), is inductively
defined by:

▶ Basis step

L(𝜀) ≔ {𝜀},
L(∅) ≔ ∅,
L(𝒂) ≔ {𝑎}.

▶ Inductive step
Let L(𝐸) and L(𝐹) be the languages denoted by the regular
expressions 𝐸 and 𝐹 , then

L(𝐸 + 𝐹) ≔ L(𝐸) ∪ L(𝐹),
L(𝐸 · 𝐹) ≔ L(𝐸) · L(𝐹),

L(𝐸∗) ≔ (L(𝐸))∗,
L((𝐸)) ≔ L(𝐸).

Languages Denoted by Regular Expressions 21/48



Languages Denoted by Regular Expressions
Definition
Let 𝐸 be a regular expression. The language denoted by 𝐸, denoted by L(𝐸), is inductively
defined by:

▶ Basis step

L(𝜀) ≔ {𝜀},
L(∅) ≔ ∅,
L(𝒂) ≔ {𝑎}.

▶ Inductive step
Let L(𝐸) and L(𝐹) be the languages denoted by the regular
expressions 𝐸 and 𝐹 , then

L(𝐸 + 𝐹) ≔ L(𝐸) ∪ L(𝐹),
L(𝐸 · 𝐹) ≔ L(𝐸) · L(𝐹),

L(𝐸∗) ≔ (L(𝐸))∗,
L((𝐸)) ≔ L(𝐸).

Languages Denoted by Regular Expressions 22/48



Languages Denoted by Regular Expressions
Example

𝐸 L(𝐸)
𝒂 + 𝒃 L(𝒂) ∪ L(𝒃) = {𝑎} ∪ {𝑏} = {𝑎, 𝑏}

𝒂∗ {𝜀, 𝑎, 𝑎𝑎, 𝑎𝑎𝑎,…}

(𝒂 + 𝒃)(𝒂 + 𝒃) L(𝒂 + 𝒃) · L(𝒂 + 𝒃) = {𝑎, 𝑏} · {𝑎, 𝑏} = {𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏}

𝒂 + (𝒂𝒃)∗ {𝑎, 𝜀, 𝑎𝑏, 𝑎𝑏𝑎𝑏, 𝑎𝑏𝑎𝑏𝑎𝑏,…}

(𝟎 + 𝟏)∗𝟎𝟏(𝟎 + 𝟏)∗ { 𝑥01𝑦 ∣ 𝑥, 𝑦 ∈ {0, 1}∗ }

𝒂𝒊(𝒂1 + 𝒂2 +⋯+ 𝒂𝒏)∗ {𝑤 ∈ Σ∗ ∣ 𝑤 starts by 𝑎𝑖 }

Languages Denoted by Regular Expressions 23/48



Languages Denoted by Regular Expressions
Example

𝐸 L(𝐸)
𝒂 + 𝒃 L(𝒂) ∪ L(𝒃) = {𝑎} ∪ {𝑏} = {𝑎, 𝑏}

𝒂∗ {𝜀, 𝑎, 𝑎𝑎, 𝑎𝑎𝑎,…}

(𝒂 + 𝒃)(𝒂 + 𝒃) L(𝒂 + 𝒃) · L(𝒂 + 𝒃) = {𝑎, 𝑏} · {𝑎, 𝑏} = {𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏}

𝒂 + (𝒂𝒃)∗ {𝑎, 𝜀, 𝑎𝑏, 𝑎𝑏𝑎𝑏, 𝑎𝑏𝑎𝑏𝑎𝑏,…}

(𝟎 + 𝟏)∗𝟎𝟏(𝟎 + 𝟏)∗ { 𝑥01𝑦 ∣ 𝑥, 𝑦 ∈ {0, 1}∗ }

𝒂𝒊(𝒂1 + 𝒂2 +⋯+ 𝒂𝒏)∗ {𝑤 ∈ Σ∗ ∣ 𝑤 starts by 𝑎𝑖 }

Languages Denoted by Regular Expressions 24/48



Languages Denoted by Regular Expressions
Example

𝐸 L(𝐸)
𝒂 + 𝒃 L(𝒂) ∪ L(𝒃) = {𝑎} ∪ {𝑏} = {𝑎, 𝑏}

𝒂∗ {𝜀, 𝑎, 𝑎𝑎, 𝑎𝑎𝑎,…}

(𝒂 + 𝒃)(𝒂 + 𝒃) L(𝒂 + 𝒃) · L(𝒂 + 𝒃) = {𝑎, 𝑏} · {𝑎, 𝑏} = {𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏}

𝒂 + (𝒂𝒃)∗ {𝑎, 𝜀, 𝑎𝑏, 𝑎𝑏𝑎𝑏, 𝑎𝑏𝑎𝑏𝑎𝑏,…}

(𝟎 + 𝟏)∗𝟎𝟏(𝟎 + 𝟏)∗ { 𝑥01𝑦 ∣ 𝑥, 𝑦 ∈ {0, 1}∗ }

𝒂𝒊(𝒂1 + 𝒂2 +⋯+ 𝒂𝒏)∗ {𝑤 ∈ Σ∗ ∣ 𝑤 starts by 𝑎𝑖 }

Languages Denoted by Regular Expressions 25/48



Languages Denoted by Regular Expressions
Example

𝐸 L(𝐸)
𝒂 + 𝒃 L(𝒂) ∪ L(𝒃) = {𝑎} ∪ {𝑏} = {𝑎, 𝑏}

𝒂∗ {𝜀, 𝑎, 𝑎𝑎, 𝑎𝑎𝑎,…}

(𝒂 + 𝒃)(𝒂 + 𝒃) L(𝒂 + 𝒃) · L(𝒂 + 𝒃) = {𝑎, 𝑏} · {𝑎, 𝑏} = {𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏}

𝒂 + (𝒂𝒃)∗ {𝑎, 𝜀, 𝑎𝑏, 𝑎𝑏𝑎𝑏, 𝑎𝑏𝑎𝑏𝑎𝑏,…}

(𝟎 + 𝟏)∗𝟎𝟏(𝟎 + 𝟏)∗ { 𝑥01𝑦 ∣ 𝑥, 𝑦 ∈ {0, 1}∗ }

𝒂𝒊(𝒂1 + 𝒂2 +⋯+ 𝒂𝒏)∗ {𝑤 ∈ Σ∗ ∣ 𝑤 starts by 𝑎𝑖 }

Languages Denoted by Regular Expressions 26/48



Languages Denoted by Regular Expressions
Example

𝐸 L(𝐸)
𝒂 + 𝒃 L(𝒂) ∪ L(𝒃) = {𝑎} ∪ {𝑏} = {𝑎, 𝑏}

𝒂∗ {𝜀, 𝑎, 𝑎𝑎, 𝑎𝑎𝑎,…}

(𝒂 + 𝒃)(𝒂 + 𝒃) L(𝒂 + 𝒃) · L(𝒂 + 𝒃) = {𝑎, 𝑏} · {𝑎, 𝑏} = {𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏}

𝒂 + (𝒂𝒃)∗ {𝑎, 𝜀, 𝑎𝑏, 𝑎𝑏𝑎𝑏, 𝑎𝑏𝑎𝑏𝑎𝑏,…}

(𝟎 + 𝟏)∗𝟎𝟏(𝟎 + 𝟏)∗ { 𝑥01𝑦 ∣ 𝑥, 𝑦 ∈ {0, 1}∗ }

𝒂𝒊(𝒂1 + 𝒂2 +⋯+ 𝒂𝒏)∗ {𝑤 ∈ Σ∗ ∣ 𝑤 starts by 𝑎𝑖 }

Languages Denoted by Regular Expressions 27/48



Languages Denoted by Regular Expressions
Example

𝐸 L(𝐸)
𝒂 + 𝒃 L(𝒂) ∪ L(𝒃) = {𝑎} ∪ {𝑏} = {𝑎, 𝑏}

𝒂∗ {𝜀, 𝑎, 𝑎𝑎, 𝑎𝑎𝑎,…}

(𝒂 + 𝒃)(𝒂 + 𝒃) L(𝒂 + 𝒃) · L(𝒂 + 𝒃) = {𝑎, 𝑏} · {𝑎, 𝑏} = {𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏}

𝒂 + (𝒂𝒃)∗ {𝑎, 𝜀, 𝑎𝑏, 𝑎𝑏𝑎𝑏, 𝑎𝑏𝑎𝑏𝑎𝑏,…}

(𝟎 + 𝟏)∗𝟎𝟏(𝟎 + 𝟏)∗ { 𝑥01𝑦 ∣ 𝑥, 𝑦 ∈ {0, 1}∗ }

𝒂𝒊(𝒂1 + 𝒂2 +⋯+ 𝒂𝒏)∗ {𝑤 ∈ Σ∗ ∣ 𝑤 starts by 𝑎𝑖 }

Languages Denoted by Regular Expressions 28/48



Languages Denoted by Regular Expressions
Example
Write a regular expression for the language 𝐿 defined by

𝐿 = {𝑤 ∈ {0, 1}∗ ∣ 0 and 1 alternate in 𝑤}.

Solution.
(𝟎𝟏)∗ + (𝟏𝟎)∗ + 𝟎(𝟏𝟎)∗ + 𝟏(𝟎𝟏)∗

Other solution.
(𝜀 + 𝟏)(𝟎𝟏)∗(𝜀 + 𝟎)

Languages Denoted by Regular Expressions 29/48



Languages Denoted by Regular Expressions
Example
Write a regular expression for the language 𝐿 defined by

𝐿 = {𝑤 ∈ {0, 1}∗ ∣ 0 and 1 alternate in 𝑤}.

Solution.
(𝟎𝟏)∗ + (𝟏𝟎)∗ + 𝟎(𝟏𝟎)∗ + 𝟏(𝟎𝟏)∗

Other solution.
(𝜀 + 𝟏)(𝟎𝟏)∗(𝜀 + 𝟎)

Languages Denoted by Regular Expressions 30/48



Languages Denoted by Regular Expressions
Example
Write a regular expression for the language 𝐿 defined by

𝐿 = {𝑤 ∈ {0, 1}∗ ∣ 0 and 1 alternate in 𝑤}.

Solution.
(𝟎𝟏)∗ + (𝟏𝟎)∗ + 𝟎(𝟏𝟎)∗ + 𝟏(𝟎𝟏)∗

Other solution.
(𝜀 + 𝟏)(𝟎𝟏)∗(𝜀 + 𝟎)

Languages Denoted by Regular Expressions 31/48



Languages Denoted by Regular Expressions
Example
The regular expression

(𝟏𝟎 + 𝟎)∗(𝜀 + 𝟏)

denotes the set of strings of 0’s and 1’s that have no two adjacent 1’s.

Languages Denoted by Regular Expressions 32/48



Languages Denoted by Regular Expressions
Example
Write a regular expression for denoting the set of strings over Σ = {0, 1} not ending in 01.

Solution.
𝜀 + 𝟎 + 𝟏 + (𝟎 + 𝟏)∗(𝟎𝟎 + 𝟏𝟎 + 𝟏𝟏)

Languages Denoted by Regular Expressions 33/48



Languages Denoted by Regular Expressions
Example
Write a regular expression for denoting the set of strings over Σ = {0, 1} not ending in 01.
Solution.

𝜀 + 𝟎 + 𝟏 + (𝟎 + 𝟏)∗(𝟎𝟎 + 𝟏𝟎 + 𝟏𝟏)

Languages Denoted by Regular Expressions 34/48



Derivatives of Regular Expressions
Observation
The material on derivatives of regular expressions is from [Brzozowski 1964].

Definition
Let 𝐿 ⊆ Σ∗ be a language and 𝑎 ∈ Σ a symbol. We define the derivative of 𝐿 by 𝑎, denoted
by 𝜕𝑎𝐿, by

𝜕𝑎 ∶ 𝒫Σ∗ → 𝒫Σ∗

𝜕𝑎𝐿 = {𝑥 ∈ Σ∗ ∣ 𝑎𝑥 ∈ 𝐿}.

Example
𝜕𝑎{𝑎𝑏𝑎𝑏, 𝑎𝑏𝑏𝑎} = {𝑏𝑎𝑏, 𝑏𝑏𝑎},

𝜕𝑎L(𝒂𝒃∗) = L(𝒃∗),
𝜕𝑏L(𝒂𝒃∗) = ∅.

Derivatives of Regular Expressions 35/48



Derivatives of Regular Expressions
Observation
The material on derivatives of regular expressions is from [Brzozowski 1964].
Definition
Let 𝐿 ⊆ Σ∗ be a language and 𝑎 ∈ Σ a symbol. We define the derivative of 𝐿 by 𝑎, denoted
by 𝜕𝑎𝐿, by

𝜕𝑎 ∶ 𝒫Σ∗ → 𝒫Σ∗

𝜕𝑎𝐿 = {𝑥 ∈ Σ∗ ∣ 𝑎𝑥 ∈ 𝐿}.

Example
𝜕𝑎{𝑎𝑏𝑎𝑏, 𝑎𝑏𝑏𝑎} = {𝑏𝑎𝑏, 𝑏𝑏𝑎},

𝜕𝑎L(𝒂𝒃∗) = L(𝒃∗),
𝜕𝑏L(𝒂𝒃∗) = ∅.

Derivatives of Regular Expressions 36/48



Derivatives of Regular Expressions
Observation
The material on derivatives of regular expressions is from [Brzozowski 1964].
Definition
Let 𝐿 ⊆ Σ∗ be a language and 𝑎 ∈ Σ a symbol. We define the derivative of 𝐿 by 𝑎, denoted
by 𝜕𝑎𝐿, by

𝜕𝑎 ∶ 𝒫Σ∗ → 𝒫Σ∗

𝜕𝑎𝐿 = {𝑥 ∈ Σ∗ ∣ 𝑎𝑥 ∈ 𝐿}.

Example
𝜕𝑎{𝑎𝑏𝑎𝑏, 𝑎𝑏𝑏𝑎} = {𝑏𝑎𝑏, 𝑏𝑏𝑎},

𝜕𝑎L(𝒂𝒃∗) = L(𝒃∗),
𝜕𝑏L(𝒂𝒃∗) = ∅.

Derivatives of Regular Expressions 37/48



Derivatives of Regular Expressions
Definition
Let 𝐸 be a regular expression on Σ and let 𝑎 ∈ Σ be a symbol. We define recursively the
derivative of 𝐸 by 𝑎, denoted 𝜕𝑎𝐸, by

𝜕𝑎 ∶ RegEx → RegEx

𝜕𝑎∅ = ∅,
𝜕𝑎𝜀 = ∅,
𝜕𝑎𝒂 = 𝜀,
𝜕𝑎𝒃 = ∅, for 𝑎 ≠ 𝑏,

𝜕𝑎(𝐸 + 𝐹) = 𝜕𝑎𝐸 + 𝜕𝑎𝐹,

𝜕𝑎(𝐸𝐹) = {(𝜕𝑎𝐸)𝐹 + 𝜕𝑎𝐹, if 𝜀 ∈ L(𝐸),
(𝜕𝑎𝐸)𝐹 , otherwise,

𝜕𝑎(𝐸∗) = (𝜕𝑎𝐸)𝐸∗.

Derivatives of Regular Expressions 38/48



Derivatives of Regular Expressions
Definition
Let 𝐸 be a regular expression on Σ and let 𝑤 ∈ Σ∗ be a string. We define recursively the
derivative of 𝐸 by 𝑤, denoted 𝜕𝑤𝐸, by

𝜕𝑤 ∶ RegEx → RegEx
𝜕𝜀𝐸 = 𝐸,

𝜕𝑎𝑥𝐸 = 𝜕𝑎(𝜕𝑥𝐸).

Derivatives of Regular Expressions 39/48



Derivatives of Regular Expressions
Theorem (Brzozowski [1964], Theorem 4.2)
Let 𝐸 be a regular expression on Σ and let 𝑤 ∈ Σ∗ be a string. Then

𝑤 ∈ L(𝐸) ⇔ 𝜀 ∈ L(𝜕𝑤𝐸).

Derivatives of Regular Expressions 40/48



Libraries
Observation
Theoretical regular expressions ≠ practical regular expressions.

Some programming languages with support to regular expressions
.NET, C, Haskell, Java, Mathematica, MATLAB and Perl.

Algorithms, Applications and Libraries 41/48



Libraries
Observation
Theoretical regular expressions ≠ practical regular expressions.

Some programming languages with support to regular expressions
.NET, C, Haskell, Java, Mathematica, MATLAB and Perl.

Algorithms, Applications and Libraries 42/48



Algorithms
Algorithms
See the Haskell implementation of some algorithms on regular expressions in the course
homepage.

Algorithms, Applications and Libraries 43/48



Applications
Some programs that use regular expressions

Grep: Print lines matching a pattern
Awk: Pattern scanning and processing language
Sed: Stream editor for filtering and transforming text

Alex, Flex and Lex: Lexical-analyser generators
Emacs and Vim: Test editors

MySQL and Oracle: Databases

Algorithms, Applications and Libraries 44/48



Applications
Reading
§ 3.3. Applications of Regular Expressions.

In the above section are defined:

𝐸+ ≔ 𝐸𝐸∗ (one or many times operator)
𝐸? ≔ 𝜀 + 𝐸 (zero or one time operator)

Algorithms, Applications and Libraries 45/48



Applications
Reading
§ 3.3. Applications of Regular Expressions.
In the above section are defined:

𝐸+ ≔ 𝐸𝐸∗ (one or many times operator)
𝐸? ≔ 𝜀 + 𝐸 (zero or one time operator)

Algorithms, Applications and Libraries 46/48



An Implementation: A Regular Expression Matcher

‘Rob’s implementation itself is a superb example
of beautiful code: compact, elegant, efficient,
and useful. It’s one of the best examples of re-
cursion that I have ever seen.’

Brian Kernighan, p. 3.

Algorithms, Applications and Libraries 47/48



References
Brzozowski, J. A. (1964). Derivates of Regular Expressions. Journal of the ACM 11.4, pp. 481–494.
doi: 10.1145/321239.321249 (cit. on pp. 35–37, 40).
Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory,
Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 2).

References 48/48

https://doi.org/10.1145/321239.321249

	Preliminaries
	Introduction
	Operations on Languages
	What the Regular Expressions Are
	Languages Denoted by Regular Expressions
	Derivatives of Regular Expressions
	Algorithms, Applications and Libraries
	References

