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Preliminaries

Conventions

P The number and page numbers assigned to chapters, examples, exercises, figures, quotes,

sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman (1979) 2007].

P The natural numbers include the zero, that is, N = {0,1,2,... }.
P The power set of a set A, that is, the set of its subsets, is denoted by P A.
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Properties of Regular Languages

P Proving languages not to be regular
P Closure properties
P Decision properties

P Equivalence and minimization of automata
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The Pumping Lemma

Introduction

P Is L, ={0™1" | m,n >0} a regular language?
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The Pumping Lemma

Introduction

P Is L, ={0™1" | m,n >0} a regular language?
Yes! L, = L(0*1").

P Is L, ={0™1" | m,n >1}a regular language?
Yes! L, = L(0"17).

P Is L, ={0™1" | m >2,n >4} a regular language?
Yes! L, = L(000°11111%).

P Is L, ={0"1"|n>1}a regular language?

No! Informal proof (whiteboard).
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The Pumping Lemma

Theorem 4.1 (Pumping Lemma for regular languages)

Let L be a regular language. Then there exists a positive integer n (which depends on L) such
that for every string w € L such that |w| > n, we can break w into three strings, w = zyz,
such that:

Yy * €, (1)
[zyl <mn, (2)
(Vk > 0)(zy*z € L). (3)

Formally,

(IneZ")(Vw € L)(Jw| > n = (Fz)(Fy)(3z)[w = zyz A (1) A (2) A (3)]).
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The Pumping Lemma

Proof
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The Pumping Lemma

Proof
1. Suppose L is a regular language. Exist a DFA A = (Q, X%, 0, q,, ') with n states such that
L(A) = L.

2. Llet w=a;--a, € L, m>nand g = 5((]0,@1 eay).
3. By the pigeonhole principle, exists : and j, with 0 <7 < j < n such that ¢, = ¢;.
4. Let w = xyz where

y = a“i+1 aj

x:al...ai A Z:alj+1...am
start —( 4o )< i ) @

N\
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Proof

1. Suppose L is a regular language. Exist a DFA A = (Q, X%, 0, q,, ') with n states such that
L(A) = L.

2. Llet w=a;--a, € L, m>nand g = 5((]0,@1 eay).

3. By the pigeonhole principle, exists : and j, with 0 <7 < j < n such that ¢, = ¢;.
4. Let w = xyz where

y = a“i+1 aj

x:al...ai A Z:alj+1...am
start —( 4o )< \y< @
5. Then (Vk > 0)(zy*z € L).
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Application of the Pumping Lemma: Proving Languages Not to Be
Regular

Proof schemata
Whiteboard.
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Application of the Pumping Lemma: Proving Languages Not to Be
Regular

Exercise 4.1.2.e

Let ¥ = {0,1} be an alphabet and let L = {ww | w € £* } be the so-called copy language.
Prove that L is not regular.

(continued on next slide)
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Application of the Pumping Lemma: Proving Languages Not to Be
Regular

Exercise 4.1.2.a
Let L be the language
L =1{0"|nis a perfect square }.

Prove that L is not regular.

(continued on next slide)
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Other Methods for Proving Languages Not to Be Regular

Observation
Frishberg and Gasarch [2018] show other methods and some open problems when proving that
a language is not regular. The open problem 3.2 is related to the pumping lemma.

Open problem
‘Find a non-regular language that cannot be proven non-regular using the pumping theorem and
reductions, or show such a language does not exist.
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