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Preliminaries
Conventions

▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman (1979) 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2, … }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫𝐴.
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Non-Deterministic Finite Automata
Introduction

▶ The transition from a state and a symbol can be to: one state, various states or no state.

𝑞𝑖 𝑞𝑗
a 𝑞𝑖

𝑞𝑗

𝑞𝑘

⋮

a

a

a 𝑞𝑖 ∅a

(continued on next slide)
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Non-Deterministic Finite Automata
Introduction (continuation)

▶ Nondeterminism does not increase the computational power (or expressive power) of finite
automata.

▶ The processing of an input by a non-deterministic finite automaton can be thought of in
terms of guess and verify [Kozen (1997) 2012].

▶ Nondeterminism facilitates the design of the automata.
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Non-Deterministic Finite Automata
Example
A non-deterministic finite automaton accepting all the binary strings that end in 01.

𝑞0start 𝑞1 𝑞2

0, 1

0 1

▶ 𝑞0: The automaton ‘guess’ that the final 01 has not begun.
▶ 𝑞1: The automaton ‘guess’ that the final 01 has begun.
▶ 𝑞2: The word ends in 01.
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Non-Deterministic Finite Automata
Definition
A non-deterministic finite automaton (NFA) is a 5-tuple

(𝑄, Σ, 𝛿, 𝑞0, 𝐹 ),

where
(i) 𝑄 is the finite set of states,
(ii) Σ is the alphabet of input symbols,
(iii) 𝛿 ∶ 𝑄 × Σ → 𝒫𝑄 is the transition function,
(iv) 𝑞0 ∈ 𝑄 is the start state,
(v) 𝐹 ⊆ 𝑄 is the set of accepting (or final) states.
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Extension of the Transition Function for NFAs
Definition
Let 𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) be a NFA. The extension of the transition function, denoted by ̂𝛿,
is recursively defined by

̂𝛿 ∶ 𝑄 × Σ∗ → 𝒫𝑄
̂𝛿(𝑞, 𝜀) = {𝑞},

̂𝛿(𝑞, 𝑥𝑎) = ⋃
𝑝∈ ̂𝛿(𝑞,𝑥)

𝛿(𝑝, 𝑎).
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Languages Accepted by NFAs
Recall
Let 𝐷 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) be a DFA. Recall that the language accepted by 𝐷 was defined by

L(𝐷) ≔ { 𝑤 ∈ Σ∗ ∣ ̂𝛿(𝑞0, 𝑤) ∈ 𝐹 }.
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Languages Accepted by NFAs
Definitions
Let 𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) be a NFA and let 𝑤 ∈ Σ∗ be a string.
(i) The string 𝑤 is accepted by 𝑁 iff ̂𝛿(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅.

(ii) The string 𝑤 is rejected by 𝑁 iff ̂𝛿(𝑞0, 𝑤) ∩ 𝐹 = ∅.
(iii) The language accepted by 𝑁 , denoted L(𝑁), is the set of strings accepted by 𝑁 , that is,

L(𝑁) ≔ { 𝑤 ∈ Σ∗ ∣ ̂𝛿(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅ }.

Reading
§ 2.4. An application: Text search.
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Languages Accepted by NFAs
Example 2.9
For the NFA of the figure, L(𝑁) = { 𝑤 ∈ {0, 1}∗ ∣ 𝑤 ends in 01 }.

𝑞0start 𝑞1 𝑞2

0, 1

0 1

Sketch of proof
Mutual induction on the following propositions:
𝑆0(𝑤): 𝑞0 ∈ ̂𝛿(𝑞0, 𝑤) for all 𝑤 ∈ Σ∗

𝑆1(𝑤): 𝑞1 ∈ ̂𝛿(𝑞0, 𝑤) ⇔ 𝑤 ends in 0
𝑆2(𝑤): 𝑞2 ∈ ̂𝛿(𝑞0, 𝑤) ⇔ 𝑤 ends in 01
From 𝑆2(𝑤) and 𝐹 = {𝑞2} the theorem follows.
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Languages Accepted by NFAs
Example (Exercise 2.3.4.a)
NFA accepting the set of strings over Σ = {1, 2, 3} such that the final digit has appeared before.

𝑖

start

𝑞2

𝑞1

𝑞3

𝑓

Σ 1

2

3

Σ − {1}

1Σ − {2}

2

Σ − {3} 3

▶ 𝑞𝑖: The automaton
‘guess’ that the
repeated digit is 𝑖.
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Languages Accepted by NFAs
Example (Exercise 2.3.4.a)
NFA accepting the set of strings over Σ = {1, 2, 3} such that the final digit has appeared before.

𝑖

start

𝑞2

𝑞1

𝑞3

𝑓

Σ 1

2

3

Σ − {1}

1Σ − {2}

2

Σ − {3} 3
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‘guess’ that the
repeated digit is 𝑖.
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Languages Accepted by NFAs
Example (Exercise 2.3.4.b)
NFA accepting the set of strings over Σ = {0, 1, 2} such that the final digit has not appeared
before.

𝑞0

𝑞1

𝑞2

𝑞𝑖

start

𝑞𝑓
Σ − {0}

Σ − {1}

Σ − {2}

Σ

Σ − {0}

0

Σ − {1}
1

Σ − {2}
2
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Languages Accepted by NFAs
Example (Exercise 2.3.4.b)
NFA accepting the set of strings over Σ = {0, 1, 2} such that the final digit has not appeared
before.

𝑞0

𝑞1

𝑞2

𝑞𝑖

start

𝑞𝑓
Σ − {0}

Σ − {1}

Σ − {2}

Σ

Σ − {0}

0

Σ − {1}
1

Σ − {2}
2
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Languages Accepted by NFAs
Example (Exercise 2.3.4.c)
NFA accepting the set of strings over Σ = {0, 1} such that there are two 0’s separated by a
number of positions that is multiple of 2. Note that 0 is an allowable multiple of 2.

𝑞0

start

𝑞1 𝑞2

𝑞3 𝑞4 𝑞5 𝑞6

Σ

0

0

0

Σ

Σ Σ 0

1 Σ
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Example (Exercise 2.3.4.c)
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𝑞0

start

𝑞1 𝑞2

𝑞3 𝑞4 𝑞5 𝑞6

Σ

0

0

0

Σ

Σ Σ 0

1 Σ
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Languages Accepted by NFAs
Example (Exercise 2.5.3.b)
NFA accepting the set of strings that consist of either 01 repeated one or more times or 010
repeated one or more times.

𝑞0

start

𝑞1 𝑞2

𝑞3 𝑞4 𝑞5

0

0

1

0

1 0

0
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1

0

1 0

0
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The Subset Construction
Construction
Input: A NFA 𝑁 = (𝑄𝑁 , Σ, 𝛿𝑁 , 𝑞0, 𝐹𝑁)
Output: A DFA 𝐷 = (𝑄𝐷, Σ, 𝛿𝐷, {𝑞0}, 𝐹𝐷) where

𝑄𝐷 = 𝒫𝑄𝑁 ,
𝐹𝐷 = { 𝑆 ∈ 𝒫𝑄𝑁 ∣ 𝑆 ∩ 𝐹𝑁 ≠ ∅ },

𝛿𝐷(𝑆, 𝑎) = ⋃
𝑝∈𝑆

𝛿𝑁(𝑝, 𝑎), for each 𝑆 ∈ 𝒫𝑄𝑁 and 𝑎 ∈ Σ.
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The Subset Construction
Example
Given the following NFA to build the DFA given by the subset construction.

𝑞0start 𝑞1 𝑞2

0, 1

0 1

(continued on next slide)
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The Subset Construction
Example (continuation)

{𝑞0}

start

{𝑞0, 𝑞1} {𝑞0, 𝑞2}

{𝑞0, 𝑞1, 𝑞2} ∅ {𝑞1, 𝑞2}

{𝑞1} {𝑞2}

1

0

0

1
0

1

0
1

0, 1

0

1

0, 1

0

1

(continued on next slide)
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The Subset Construction
Example (continuation)

{𝑞0}

start

{𝑞0, 𝑞1} {𝑞0, 𝑞2}

{𝑞0, 𝑞1, 𝑞2} ∅ {𝑞1, 𝑞2}

{𝑞1} {𝑞2}
1

0

0

1
0

1

0
1

0, 1

0

1

0, 1

0

1

(continued on next slide)
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The Subset Construction
Example (continuation)

{𝑞0}start {𝑞0, 𝑞1} {𝑞0, 𝑞2}

1

0

0

1
0

1
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The Subset Construction
Example (special case)
A NFA recognising the word ‘then’:

𝑞0start t th the thent h e n

The DFA given by the subset construction:

{𝑞0}start {t} {th} {the} {then}

∅

t

Σ − {t}

h

Σ − {h}

e

Σ − {e}

n

Σ − {n}
Σ

Σ
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∅

t

Σ − {t}

h

Σ − {h}

e

Σ − {e}

n

Σ − {n}
Σ

Σ
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Equivalence of DFAs and NFAs
Theorem 2.11
Let 𝐷 = (𝑄𝐷, Σ, 𝛿𝐷, {𝑞0}, 𝐹𝐷) be the DFA constructed from a NFA 𝑁 = (𝑄𝑁 , Σ, 𝛿𝑁 , 𝑞0, 𝐹𝑁)
by the subset construction. Then

̂𝛿𝐷({𝑞0}, 𝑤) = ̂𝛿𝑁(𝑞0, 𝑤)

and therefore
L(𝐷) = L(𝑁).

Proof (by structural induction on 𝑤)
In the blackboard.

Equivalence of DFAs and NFAs 33/38



Equivalence of DFAs and NFAs
Theorem 2.11
Let 𝐷 = (𝑄𝐷, Σ, 𝛿𝐷, {𝑞0}, 𝐹𝐷) be the DFA constructed from a NFA 𝑁 = (𝑄𝑁 , Σ, 𝛿𝑁 , 𝑞0, 𝐹𝑁)
by the subset construction. Then

̂𝛿𝐷({𝑞0}, 𝑤) = ̂𝛿𝑁(𝑞0, 𝑤)

and therefore
L(𝐷) = L(𝑁).

Proof (by structural induction on 𝑤)
In the blackboard.

Equivalence of DFAs and NFAs 34/38



Equivalence of DFAs and NFAs
Theorem 2.11
Let 𝐷 = (𝑄𝐷, Σ, 𝛿𝐷, {𝑞0}, 𝐹𝐷) be the DFA constructed from a NFA 𝑁 = (𝑄𝑁 , Σ, 𝛿𝑁 , 𝑞0, 𝐹𝑁)
by the subset construction. Then

̂𝛿𝐷({𝑞0}, 𝑤) = ̂𝛿𝑁(𝑞0, 𝑤)

and therefore
L(𝐷) = L(𝑁).

Proof (by structural induction on 𝑤)
In the blackboard.

Equivalence of DFAs and NFAs 35/38



Equivalence of DFAs and NFAs
Theorem 2.12
A language 𝐿 is accepted by some DFA iff 𝐿 is accepted by some NFA.

Definition
A language 𝐿 is regular iff exists a finite automaton 𝐴 (DFA or NFA) such that 𝐿 = L(𝐴).
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