CM0081 Formal Languages and Automata § 2.3 Non-Deterministic Finite Automata

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1

Preliminaries

Conventions

- The number and page numbers assigned to chapters, examples, exercises, figures, quotes, sections and theorems on these slides correspond to the numbers assigned in the textbook [Hopcroft, Motwani and Ullman (1979) 2007].
- The natural numbers include the zero, that is, $\mathbb{N} = \{0, 1, 2, ...\}$.

The power set of a set A, that is, the set of its subsets, is denoted by $\mathcal{P}A$.

Non-Deterministic Finite Automata

Introduction

Introduction (continuation)

Nondeterminism does not increase the computational power (or expressive power) of finite automata.

Introduction (continuation)

- Nondeterminism does not increase the computational power (or expressive power) of finite automata.
- The processing of an input by a non-deterministic finite automaton can be thought of in terms of guess and verify [Kozen (1997) 2012].

Introduction (continuation)

- Nondeterminism does not increase the computational power (or expressive power) of finite automata.
- The processing of an input by a non-deterministic finite automaton can be thought of in terms of guess and verify [Kozen (1997) 2012].
- Nondeterminism facilitates the design of the automata.

Example

A non-deterministic finite automaton accepting all the binary strings that end in 01.

 \blacktriangleright q_0 : The automaton 'guess' that the final 01 has not begun.

- ▶ q_1 : The automaton 'guess' that the final 01 has begun.
- \blacktriangleright q_2 : The word ends in 01.

Definition

A non-deterministic finite automaton (NFA) is a 5-tuple

 $(Q,\Sigma,\delta,q_0,F),$

where

- (i) Q is the finite set of states,
- (ii) Σ is the alphabet of input symbols,
- (iii) $\delta:Q \times \Sigma \to \mathcal{P}Q$ is the transition function,
- (iv) $q_0 \in Q$ is the start state,
- (v) $F \subseteq Q$ is the set of accepting (or final) states.

Extension of the Transition Function for NFAs

Definition

Let $N = (Q, \Sigma, \delta, q_0, F)$ be a NFA. The extension of the transition function, denoted by $\hat{\delta}$, is recursively defined by

$$\begin{split} \hat{\delta} &: Q \times \Sigma^* \to \mathcal{P}Q \\ \hat{\delta}(q,\varepsilon) &= \{q\}, \\ \hat{\delta}(q,xa) &= \bigcup_{p \in \hat{\delta}(q,x)} \delta(p,a). \end{split}$$

Recall

Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Recall that the language accepted by D was defined by

$$\mathcal{L}(D) \coloneqq \Big\{\, w \in \Sigma^* \; \Big| \; \widehat{\delta}(q_0,w) \in F \, \Big\}.$$

Definitions

Let $N=(Q,\Sigma,\delta,q_0,F)$ be a NFA and let $w\in\Sigma^*$ be a string.

(i) The string w is accepted by N iff $\hat{\delta}(q_0, w) \cap F \neq \emptyset$.

Definitions

Let $N=(Q,\Sigma,\delta,q_0,F)$ be a NFA and let $w\in\Sigma^*$ be a string.

- (i) The string w is accepted by N iff $\hat{\delta}(q_0, w) \cap F \neq \emptyset$.
- (ii) The string w is **rejected** by N iff $\hat{\delta}(q_0, w) \cap F = \emptyset$.

Definitions

Let $N=(Q,\Sigma,\delta,q_0,F)$ be a NFA and let $w\in\Sigma^*$ be a string.

- (i) The string w is accepted by N iff $\hat{\delta}(q_0, w) \cap F \neq \emptyset$.
- (ii) The string w is **rejected** by N iff $\hat{\delta}(q_0, w) \cap F = \emptyset$.

(iii) The language accepted by N, denoted L(N), is the set of strings accepted by N, that is,

$$\mathcal{L}(N) \coloneqq \Big\{ \, w \in \Sigma^* \; \Big| \; \widehat{\delta}(q_0,w) \cap F \neq \emptyset \, \Big\}.$$

Definitions

Let $N=(Q,\Sigma,\delta,q_0,F)$ be a NFA and let $w\in\Sigma^*$ be a string.

- (i) The string w is accepted by N iff $\hat{\delta}(q_0, w) \cap F \neq \emptyset$.
- (ii) The string w is **rejected** by N iff $\hat{\delta}(q_0, w) \cap F = \emptyset$.

(iii) The language accepted by N, denoted L(N), is the set of strings accepted by N, that is,

$$\mathcal{L}(N) \coloneqq \Big\{\, w \in \Sigma^* \; \Big| \; \widehat{\delta}(q_0,w) \cap F \neq \emptyset \, \Big\}.$$

Reading

§ 2.4. An application: Text search.

Example 2.9

For the NFA of the figure, $L(N) = \{ w \in \{0,1\}^* \mid w \text{ ends in } 01 \}.$

Example 2.9

For the NFA of the figure, $L(N) = \{ w \in \{0,1\}^* \mid w \text{ ends in } 01 \}.$

Sketch of proof

Mutual induction on the following propositions:

 $\begin{array}{l} S_0(w) {:}\; q_0 \in \hat{\delta}(q_0,w) \text{ for all } w \in \Sigma^* \\ S_1(w) {:}\; q_1 \in \hat{\delta}(q_0,w) \Leftrightarrow w \text{ ends in } 0 \\ S_2(w) {:}\; q_2 \in \hat{\delta}(q_0,w) \Leftrightarrow w \text{ ends in } 01 \end{array}$

From $S_2(w)$ and $F=\{q_2\}$ the theorem follows.

Languages Accepted by NFAs

Example (Exercise 2.3.4.a)

NFA accepting the set of strings over $\Sigma = \{1, 2, 3\}$ such that the final digit has appeared before.

Example (Exercise 2.3.4.a)

NFA accepting the set of strings over $\Sigma = \{1, 2, 3\}$ such that the final digit has appeared before.

 q_i: The automaton 'guess' that the repeated digit is i.

Example (Exercise 2.3.4.b)

NFA accepting the set of strings over $\Sigma = \{0, 1, 2\}$ such that the final digit has not appeared before.

Example (Exercise 2.3.4.b)

NFA accepting the set of strings over $\Sigma = \{0, 1, 2\}$ such that the final digit has not appeared before.

Example (Exercise 2.3.4.c)

NFA accepting the set of strings over $\Sigma = \{0, 1\}$ such that there are two 0's separated by a number of positions that is multiple of 2. Note that 0 is an allowable multiple of 2.

Example (Exercise 2.3.4.c)

NFA accepting the set of strings over $\Sigma = \{0, 1\}$ such that there are two 0's separated by a number of positions that is multiple of 2. Note that 0 is an allowable multiple of 2.

Example (Exercise 2.5.3.b)

NFA accepting the set of strings that consist of either 01 repeated one or more times or 010 repeated one or more times.

Example (Exercise 2.5.3.b)

NFA accepting the set of strings that consist of either 01 repeated one or more times or 010 repeated one or more times.

Construction

Input: A NFA $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$ Output: A DFA $D=(Q_D,\Sigma,\delta_D,\{q_0\},F_D)$ where

Construction

Input: A NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ Output: A DFA $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ where

$$\begin{split} Q_D &= \mathcal{P}Q_N, \\ F_D &= \{\,S \in \mathcal{P}Q_N \mid S \cap F_N \neq \emptyset \,\}, \\ \delta_D(S,a) &= \bigcup_{p \in S} \delta_N(p,a), \text{ for each } S \in \mathcal{P}Q_N \text{ and } a \in \Sigma. \end{split}$$

Example

Given the following NFA to build the DFA given by the subset construction.

Example (continuation)

Example (special case)

A NFA recognising the word 'then':

Example (special case)

A NFA recognising the word 'then':

The DFA given by the subset construction:

Theorem 2.11

Let $D=(Q_D,\Sigma,\delta_D,\{q_0\},F_D)$ be the DFA constructed from a NFA $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$ by the subset construction. Then

 $\hat{\delta}_D(\{q_0\},w)=\hat{\delta}_N(q_0,w)$

Theorem 2.11

Let $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ be the DFA constructed from a NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ by the subset construction. Then

$$\hat{\delta}_D(\{q_0\},w)=\hat{\delta}_N(q_0,w)$$

and therefore

 $\mathcal{L}(D) = \mathcal{L}(N).$

Theorem 2.11

Let $D=(Q_D,\Sigma,\delta_D,\{q_0\},F_D)$ be the DFA constructed from a NFA $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$ by the subset construction. Then

 $\hat{\delta}_D(\{q_0\},w)=\hat{\delta}_N(q_0,w)$

and therefore

 $\mathcal{L}(D) = \mathcal{L}(N).$

Proof (by structural induction on w) In the blackboard.

Theorem 2.12

A language L is accepted by some DFA iff L is accepted by some NFA.

Theorem 2.12

A language L is accepted by some DFA iff L is accepted by some NFA.

Definition

A language L is regular iff exists a finite automaton A (DFA or NFA) such that L = L(A).

References

- Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 2).
- Kozen, D. C. [1997] (2012). Automata and Computability. Third printing. Undergraduate Texts in Computer Science. Springer. DOI: 10.1007/978-1-4612-1844-9 (cit. on pp. 4–6).