
CM0081 Formal Languages and Automata
Introduction

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1

1/29



Pacto pedagógico

Como miembros de la Universidad EAFIT, nos comprometemos a actuar de manera íntegra
siguiendo los más altos estándares éticos y morales.

▶ Respeto
▶ Tolerancia
▶ Honradez
▶ Compromiso

Pacto pedagógico 2/29



Pacto pedagógico
Página web del curso
http://www1.eafit.edu.co/asr/courses/cm0081-automata/

Conducto regular, fechas y porcentajes de las evaluaciones
La información está en la página web del curso.

Responsabilidad compartida
▶ Profesor
▶ Estudiantes

Pacto pedagógico 3/29

http://www1.eafit.edu.co/asr/courses/cm0081-automata/


Pacto pedagógico
Página web del curso
http://www1.eafit.edu.co/asr/courses/cm0081-automata/

Conducto regular, fechas y porcentajes de las evaluaciones
La información está en la página web del curso.

Responsabilidad compartida
▶ Profesor
▶ Estudiantes

Pacto pedagógico 4/29

http://www1.eafit.edu.co/asr/courses/cm0081-automata/


Pacto pedagógico
Página web del curso
http://www1.eafit.edu.co/asr/courses/cm0081-automata/

Conducto regular, fechas y porcentajes de las evaluaciones
La información está en la página web del curso.

Responsabilidad compartida
▶ Profesor
▶ Estudiantes

Pacto pedagógico 5/29

http://www1.eafit.edu.co/asr/courses/cm0081-automata/


Pacto pedagógico
Orientaciones para el curso

▶ Se recomienda seis horas de trabajo por semana (dos horas por cada hora de clase).
▶ Las clases son presenciales.
▶ La evaluación a la docencia es obligatoria.
▶ Se recomienda revisar periódicamente los canales de comunicación institucionales (EAFIT

Interactiva, correo institucional, Microsoft Teams).
▶ Las prácticas no se pueden realizar de manera individual y se deben realizar máximo entre

dos estudiantes.

Pacto pedagógico 6/29



Preliminaries
Conventions

▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman (1979) 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2, … }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫𝐴.

Pacto pedagógico 7/29



Computability (Decidability)
Question (informal)
What can a computer do at all?

Definition (informal)
A computable (or decidable) problem is a problem than can be solved by an algorithm.

Question
Are there undecidable problems?

Computability and Algorithmic Complexity 8/29



Computability (Decidability)
Question (informal)
What can a computer do at all?

Definition (informal)
A computable (or decidable) problem is a problem than can be solved by an algorithm.

Question
Are there undecidable problems?

Computability and Algorithmic Complexity 9/29



Computability (Decidability)
Question (informal)
What can a computer do at all?

Definition (informal)
A computable (or decidable) problem is a problem than can be solved by an algorithm.

Question
Are there undecidable problems?

Computability and Algorithmic Complexity 10/29



Computability (Decidability)
Example (The halting problem: An undecidable problem)
Given an program P and an input I, to decide if the program will halt or will run forever.

halting algorithm

P Yes

I No

The halting algorithm does not exist.

Computability and Algorithmic Complexity 11/29



Algorithmic Complexity (Tractability)
Question
What can a computer do efficiently?

Definition
A tractable problem is a problem than can be solved by a computer algorithm that run in
polynomial time.

Computability and Algorithmic Complexity 12/29



Algorithmic Complexity (Tractability)
Question
What can a computer do efficiently?

Definition
A tractable problem is a problem than can be solved by a computer algorithm that run in
polynomial time.

Computability and Algorithmic Complexity 13/29



Algorithmic Complexity (Tractability)
Example (3-SAT: An intractable problem)
A literal is an atomic formula (propositional variable) or the negation of an atomic formula.

A (propositional logic) formula 𝐹 is in conjunctive normal form iff

𝐹 has the form 𝐹1 ∧ ⋯ ∧ 𝐹𝑛,

where each 𝐹1, … , 𝐹𝑛 is a disjunction of literals.

3-SAT problem: To determine the satisfiability of a propositional formula in conjunctive normal
form where each disjunction of literals is limited to at most three literals.

The 3-SAT problem is an intractable problem. The problem was proposed in Karp’s 21 NP-
complete problems [Karp 1972].

Computability and Algorithmic Complexity 14/29



Algorithmic Complexity (Tractability)
Example (3-SAT: An intractable problem)
A literal is an atomic formula (propositional variable) or the negation of an atomic formula.

A (propositional logic) formula 𝐹 is in conjunctive normal form iff

𝐹 has the form 𝐹1 ∧ ⋯ ∧ 𝐹𝑛,

where each 𝐹1, … , 𝐹𝑛 is a disjunction of literals.

3-SAT problem: To determine the satisfiability of a propositional formula in conjunctive normal
form where each disjunction of literals is limited to at most three literals.

The 3-SAT problem is an intractable problem. The problem was proposed in Karp’s 21 NP-
complete problems [Karp 1972].

Computability and Algorithmic Complexity 15/29



Algorithmic Complexity (Tractability)
Example (3-SAT: An intractable problem)
A literal is an atomic formula (propositional variable) or the negation of an atomic formula.

A (propositional logic) formula 𝐹 is in conjunctive normal form iff

𝐹 has the form 𝐹1 ∧ ⋯ ∧ 𝐹𝑛,

where each 𝐹1, … , 𝐹𝑛 is a disjunction of literals.

3-SAT problem: To determine the satisfiability of a propositional formula in conjunctive normal
form where each disjunction of literals is limited to at most three literals.

The 3-SAT problem is an intractable problem. The problem was proposed in Karp’s 21 NP-
complete problems [Karp 1972].

Computability and Algorithmic Complexity 16/29



Algorithmic Complexity (Tractability)
Example (3-SAT: An intractable problem)
A literal is an atomic formula (propositional variable) or the negation of an atomic formula.

A (propositional logic) formula 𝐹 is in conjunctive normal form iff

𝐹 has the form 𝐹1 ∧ ⋯ ∧ 𝐹𝑛,

where each 𝐹1, … , 𝐹𝑛 is a disjunction of literals.

3-SAT problem: To determine the satisfiability of a propositional formula in conjunctive normal
form where each disjunction of literals is limited to at most three literals.

The 3-SAT problem is an intractable problem. The problem was proposed in Karp’s 21 NP-
complete problems [Karp 1972].

Computability and Algorithmic Complexity 17/29



Computability and Algorithmic Complexity
Classification of problems

Problem
(Computability)

⎧{{{{{{{
⎨{{{{{{{⎩

Computable (decidable)
(Algorithm Complexity)

⎧{{{
⎨{{{⎩

Tractable

Intractable

Non-computable (undecidable)
(Hypercomputation)

Computability and Algorithmic Complexity 18/29



Course Outline
Language Machine Other models
Regular DFA • Regular expressions

• NFA
• 𝜀-NFA

Context-free Pushdown
automata

Recursive Halting TMs • 𝜆-calculus
• Total recursive functions

Recursively
enumerable

TMs • 𝜆-calculus
• Partial recursive functions

DFA: Deterministic finite automata
NFA: Non-deterministic finite automata
𝜀-NFA: Non-deterministic finite automata with 𝜀-transitions
TM: Turing machine

Course Outline 19/29



Paradigms of Programming
Some paradigms

▶ Imperative/object-oriented: Describe computation in terms of state-transforming operations
such as assignment. Programming is done with statements.

▶ Functional: Describe computation in terms of (mathematical) functions. Programming is
done with expressions.

▶ Logic: Predicate calculus as a programming language. Programming is done with sentences.

Examples
Imperative/OO: C, C++, Java, Python
Functional: Erlang, Haskell, Standard ML
Logic: CLP(R), Prolog

Paradigms of Programming 20/29



Pure Functional Programming
Description

‘A side effect introduces a dependency between the global state of the system and
the behaviour of a function... Side effects are essentially invisible inputs to, or outputs
from, functions.’ [O’Sullivan, Goerzen and Stewart 2008, p. 27]

Paradigms of Programming 21/29



Pure Functional Programming
Description

▶ A pure function ‘take all their input as explicit arguments, and produce all their output
as explicit results.’ [Hutton (2007) 2016, § 10.1]

▶ A function is a pure function if it satisfies both of the following statements (Wikipedia:
Pure function (July 28, 2014)):

(i) ‘The function always evaluates the same result value given the same argument value(s).
The function result value cannot depend on any…state that may change as program
execution proceeds or between different executions of the program, nor can it depend
on any external input from I/O devices.’

(ii) ‘Evaluation of the result does not cause any semantically observable side effect or
output, such as mutation of mutable objects or output to I/O devices.’

Paradigms of Programming 22/29



Pure Functional Programming
Description

▶ A pure function ‘take all their input as explicit arguments, and produce all their output
as explicit results.’ [Hutton (2007) 2016, § 10.1]

▶ A function is a pure function if it satisfies both of the following statements (Wikipedia:
Pure function (July 28, 2014)):

(i) ‘The function always evaluates the same result value given the same argument value(s).
The function result value cannot depend on any…state that may change as program
execution proceeds or between different executions of the program, nor can it depend
on any external input from I/O devices.’

(ii) ‘Evaluation of the result does not cause any semantically observable side effect or
output, such as mutation of mutable objects or output to I/O devices.’

Paradigms of Programming 23/29



Pure Functional Programming
Description

▶ A pure function ‘take all their input as explicit arguments, and produce all their output
as explicit results.’ [Hutton (2007) 2016, § 10.1]

▶ A function is a pure function if it satisfies both of the following statements (Wikipedia:
Pure function (July 28, 2014)):

(i) ‘The function always evaluates the same result value given the same argument value(s).
The function result value cannot depend on any…state that may change as program
execution proceeds or between different executions of the program, nor can it depend
on any external input from I/O devices.’

(ii) ‘Evaluation of the result does not cause any semantically observable side effect or
output, such as mutation of mutable objects or output to I/O devices.’

Paradigms of Programming 24/29



Pure Functional Programming
Referential transparency

▶ Equals can be replaced by equals

▶ ‘By definition, a function in Haskell defines a fixed relation between inputs and output:
whenever a function 𝑓 is applied to the argument value 𝑎𝑟𝑔 it will produce the same
output no matter what the overall state of the computation is. Haskell, like any other
pure functional language, is said to be “referentially transparent” or “side-effect free”. This
property does not hold for imperative languages.’ [Grune, Bal, Jacobs and Langendoen
2003, pp. 544–545]

Paradigms of Programming 25/29



Pure Functional Programming
Referential transparency

▶ Equals can be replaced by equals
▶ ‘By definition, a function in Haskell defines a fixed relation between inputs and output:

whenever a function 𝑓 is applied to the argument value 𝑎𝑟𝑔 it will produce the same
output no matter what the overall state of the computation is. Haskell, like any other
pure functional language, is said to be “referentially transparent” or “side-effect free”. This
property does not hold for imperative languages.’ [Grune, Bal, Jacobs and Langendoen
2003, pp. 544–545]

Paradigms of Programming 26/29



Pure Functional Programming
Reasoning about (pure) functional programs

Equational reasoning + induction + co-induction + …

Paradigms of Programming 27/29



Reading
Homework
To read from the textbook the following sections:
§ 1.1. Why Study Automata Theory?
§ 1.2. Introduction to Formal Proofs
§ 1.3. Additional Forms of Proofs

Reading 28/29



References
Grune, D., Bal, H. E., Jacobs, C. J. H. and Langendoen, K. G. (2003). Modern Compiler Desing.
Worldwide Series in Computer Science. John Wiley & Sons (cit. on pp. 25, 26).
Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory,
Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 7).
Hutton, G. [2007] (2016). Programming in Haskell. 2nd ed. Cambridge University Press (cit. on
pp. 22–24).
Karp, R. M. (1972). Reducibility Among Combinatorial Problems. In: Complexity of Computer
Computations. Ed. by Miller, R. E. and Thatcher, J. W. Plenum Press, pp. 85–103. doi: 10.1007/
978-1-4684-2001-2_9 (cit. on pp. 14–17).
O’Sullivan, B., Goerzen, J. and Stewart, D. (2008). Real World Haskell. O’Really Media, Inc. (cit.
on p. 21).

References 29/29

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

	Pacto pedagógico
	Computability and Algorithmic Complexity
	Course Outline
	Paradigms of Programming
	Reading
	References

