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Motivation
Absolute computability

‘For how can we ever exclude the possibility of our being presented, some day (per-
haps by some extraterrestrial visitor), with a (perhaps extremely complex) device or
“oracle” that “computes” a noncomputable function? However, there are fairly con-
vincing reasons for believing that this will never happen.’ [Davis 1958, p. 11]
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Motivation
Relative computability

‘Troubles with absolutism are deeper and more extensive than these cracks (analogue
procedures and newer physics) reveal. For one thing, computability is relative not
simply to physics, but more generally to systems of frameworks, which include or
contain underlying logics.’ [Sylvan and Copeland 2000, p. 190]
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Hypercomputers
Definition

‘Hypercomputation is the computation of functions or numbers that cannot be com-
puted in the sense of Turing [1936–1937], i.e., cannot be computed with paper and
pencil in a finite number of steps by a human clerk working effectively.’ [Copeland
2002b, p. 461]
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Hypercomputers
Super Turing Machines and Non Turing Machines

TM
Super-TM

𝐿 ⊆ Σ∗

non-TM

TM
𝐿 ⊆ Σ∗
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Possible Sources of Hypercomputation

MathematicsComputability Logic

Hypercomputation Model (HM)

BiologyPhysics ?
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First Hypercomputation Model: Oracle Turing Machines
Definition
A oracle Turing machine (OTM) is a Turing machine equipped with an oracle that is capable
of answering questions about the membership of a specific set of natural numbers [Turing 1939].

Hypercomputability features
▶ If the oracle is a recursive set then OTM ≡ TM.
▶ If the oracle is a non-recursive set then OTM ≡ HM.
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On the ‘Hypercomputation’ Term

Copeland and Proudfoot [1999]:

Right Wrong
Hypercomputation Super-Turing computation

Computing beyond Turing’s limit
Breaking the Turing barrier
Etc.
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Hypercomputation Model: Accelerated Turing Machines
Definition
An accelerated Turing machine (ATM) is a Turing machine that performs its first step in
one unit of time and each subsequent step in half the time of the step before [Copeland 1998,
2002a].

Hypercomputability features
Since

1 + 1
2 + 1

4 + 1
8 + … =

∞
∑
𝑖=0

1
2𝑖 = 2,

an ATM could complete an infinity of steps in two time units.
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Hypercomputation Model: Analog Recurrent Neural Network (ARNN)
Description [Siegelmann 1999]

𝑢1

𝑢2

𝑥1

𝑥2

𝑥3

𝑥4

𝑏11

𝑏12

𝑏13𝑏22
𝑏23

𝑐3

𝑎14𝑎22
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Hypercomputation Model: Analog Recurrent Neural Network (ARNN)
Hypercomputability features

𝑎𝑖𝑗 ∈ {ℕ, ℚ, ℝ} ⇒ ARNN ≡ {DFA, TM, HM}.
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Standard Quantum Computation (SQC)
Models
Quantum Turing machines (QTM) [Deutsch 1985] and quantum circuits [Deutsch 1989].

Relation between the models

TMs Probabilistic TMs

Reversible TMs QTMs

≡

≡ ≡

≡
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‘Weak’ Hypercomputation Based on SQC
Generation of truly random numbers

𝑈𝐻 | 0⟩ = 1√
2

(| 0⟩ + | 1⟩) → measure

1. We observe the superposition state: ‘The act of observation causes the superposition to
collapse into either | 0⟩ or the | 1⟩ state with equal probability. Hence you can exploit
quantum mechanical superposition and indeterminism to simulate a perfectly fair coin
toss.’ [Williams and Clearwater 1997, p. 160]

2. The problem: It is not clear how to use this property to solve a non-computable Turing
machine problem [Ord and Kieu 2009].
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Others Quantum Computation Models
Common misunderstanding

quantum computation ≡ SQC
≡ adiabatic quantum computation (AQC)

The real situation
Kieu’s hypercomputational quantum algorithm (KHQA) [Kieu 2003a]:

finite AQC ≡ SQC
infinite AQC ≡ KHQA
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Hypercomputational Quantum Algorithm à la Kieu

Sicard, Ospina and Vélez [2006]:

Classically non-
computable 𝑃 problem

(Hilbert’s 10th problem)

Hypercomputational
quantum algorithm

Physical referent
(Infinite square well)

Simulation

Dynamical algebra
(Lie alg. 𝔰𝔲(1, 1))

Partial
solution

to 𝑃
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Hypercomputation Model: Infinite Time Turing Machines
Definition
An infinite time Turing machine is a Turing machine working on a time clocked by transfinite
ordinals [Hamkins and Lewis 2000; Hamkins 2002, 2007].

Description
For convenience, the machines have three tapes:†

input:

scratch:

output:

start

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

· · ·

· · ·

· · ·

(continued on next slide)

†Figure from Hamkins [2002, Fig. 1].
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Hypercomputation Model: Infinite Time Turing Machines
Description (continuation)
In stage 𝛼 + 1 the machine works as usual.

In limit ordinal stages the machine works as follows [Hamkins and Lewis 2000, p. 569–570]:

‘To set up such a limit ordinal configuration, the head is plucked from wherever it
might have been racing towards, and placed on top of the first cell. And it is placed
in a special distinguished limit state.’

‘Now we need to take a limit of the cell values on the tape. And we will do this cell by
cell according to the following rule: if the values appearing in a cell have converged,
that is, if they are either eventually 0 or eventually 1 before the limit stage, then the
cell retains the limiting value at the limit stage. Otherwise, in the case that the cell
values have alternated from 0 to 1 and back again unboundedly often, we make the
limit cell value 1.’
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Hypercomputation Model: Infinite Time Turing Machines
Description (continuation)

‘This completely describes the configuration of the machine at any limit ordinal stage 𝛽,
and the machine can go on computing, 𝛽 + 1, 𝛽 + 2, and so on, eventually taking
another limit at 𝛽 + 𝜔 co and so on through the ordinals.’

Hypercomputability features
The halting problem is decidable in 𝜔 many steps by infinite time Turing machines [Hamkins
and Lewis 2000].

Observation
Although not related with computability but algorithmic complexity, P ≠ NP for infinite time
Turing machines [Schindler 2003].
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Hypercomputation Model: Infinite Time Turing Machines
Theorem (Hamkins and Lewis [2000, Theorem 1.1])
Every halting infinite time computation is countable.

Observation
The infinite time Turing machines have been generalised by the ordinal computability models,
which are models based on ordinal numbers. These models include infinite time Turing machines
or Turing machines working on tapes of transfinite ‘length’. Seyfferth [2013] shows a brief
overview of these models.
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Church-Turing Thesis and Thesis M
The Church-Turing thesis

‘Any procedure than can be carried out by an idealised human clerk working mechan-
ically with paper and pencil can also be carried out by a Turing machine.’ [Copeland
and Sylvan 1999]

Thesis M
‘What can be calculated by a machine is Turing machine computable.’ [Gandy 1980]
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Physical Hypercomputation?
Open problem
The refutation of a general/physical version of Gandy’s Thesis M.
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Physical Hypercomputation?
Proposals?

▶ Hypercomputation based on oracles.†
▶ Hypercomputation based on quantum physics (infinite adiabatic quantum computation).‡
▶ Hypercomputation based on relativistic physics (cosmological phenomena).§
▶ Hypercomputation based on superluminal particles.¶
▶ Hypercomputation based on coherent domains.‖

†See [Ord and Kieu 2009; Copeland 2002b].
‡See [Sicard, Ospina and Vélez 2006; Kieu 2005, 2004b,a, 2003b,a, 2002].
§See [Copeland and Shagrir 2020; Andréka, Madarász, I. Németi, P. Németi and Székely 2018; Welch 2008;

I. Németi and Dávid 2006; Hogarth 2004; Etesi and I. Németi 2002; Hogarth 1994, 1992; Pitowsky 1990].
¶See [Musha 2013] and other articles by this author.
‖See [Caligiuri 2023] and references therein.
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An Interesting Project: Formal Verification of Hypercomputation in
Relativistic Physics
Stannett and I. Németi [2014] and Stannett [2015]:
Goals

▶ Implement first-order axiomatisations of theories of the relativity using the proof assistant
Isabelle;

▶ Add a model of computation carried out by machines travelling along specific spacetime
trajectories;

(continued on next slide)
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An Interesting Project: Formal Verification of Hypercomputation in
Relativistic Physics
Goals (continuation)

▶ Consider how the power of these computational systems changes according to the
underlying topology of spacetime;

▶ Select a recursively uncomputable problem 𝑃 (e.g. the Halting Problem) and
machine-verify the following claims:

▶ in simpler relativistic settings, 𝑃 remains uncomputable;
▶ in some spacetimes, 𝑃 can be solved.
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An Interesting Project: Formal Verification of Hypercomputation in
Relativistic Physics
Some formalisations on Isabelle
(i) The Halting Problem is Soluble in Malament-Hogarth Spacetimes [Stannett 2023].
(ii) No Faster-Than-Light Observers (GenRel) [Stannett, Higgins, Andreka, Madarász,

I. Németi and Székely 2023].
(iii) No Faster-Than-Light Observers [Stannett and I. Németi 2016].
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Is Hypercomputation a Myth?
Davis’ refutations

▶ Davis, M. [2006]. Why There is no Such Discipline as Hypercomputation. Applied Math-
ematics and Computation 178.1, pp. 4–7. doi: 10.1016/j.amc.2005.09.066.

▶ Davis, M. [2004]. The Myth of Hypercomputation. In: Alan Turing: Life and Legaly of a
Great Thinker. Ed. by Teuscher, C. Springer, pp. 195–211. doi: 10.1007/978-3-662-
05642-4_8.

Refutation to Davis
Sundar, N. and Bringsjord, S. [2011]. The Myth of ‘The Myth of Hypercomputation’. In: Com-
bined Pre-Proceedings of P&C 2011 and HyperNet 2011. Ed. by Stannett, M., pp. 185–196.
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Final Remarks

‘Once upon on time, back in the golden age of the recursive function theory, comput-
ability was an absolute.’ [Sylvan and Copeland 2000, p. 189]

‘We live in a quantum-mechanical, relativistic physical universe, with bizarre physical
phenomena that we are only beginning to understand. Perhaps we might hope to take
computational advantage of some strange physical effect. Perhaps the physical world
is arranged in such a way that allows for the computation of a non-Turing-computable
function by means of some physical procedure.’ [Hamkins 2021, § 6.4]

(continued on next slide)
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Final Remarks

‘Is there any limit to discrete computation, and more generally, to scientific know-
ledge?’ [Calude and Dinneen 1998, p. 1]

‘“In breaking the Turing barrier, our knowledge of the world, and therefore our control
of it, would be altered forever,” Professor Cooper added.’ [Computing a way through
the Turing barrier. The Reporter. The University of Leeds Newsletter. No. 505. 21
February 2005.]
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