
CM0081 Formal Languages and Automata
Regular Expression in Haskell: An Introduction

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1



Preliminaries
Conventions
▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,

sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman (1979) 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2,… }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫𝐴.

2/8



Introduction

▶ There are various libraries for handling regular expressions in Haskell.

▶ POSIX (Portable Operating System Interface) is a family of standards specified for
maintaining compatibility between operating systems.

3/8



Notation for Regular Expressions

POSIX Textbook
𝑎𝑏 𝑎𝑏
𝑎|𝑏 𝑎 + 𝑏
𝑎∗ 𝑎∗
(𝑎) (𝑎)
𝑎+ 𝑎𝑎∗
𝑎? 𝑎 + 𝜀
[𝑎𝑏𝑐] 𝑎 + 𝑏 + 𝑐
. Any symbol

4/8



Demo
Examples
We shall use GHC 9.6.2, the libraries regex-posix 0.96.0.1 and regex-tdfa 1.3.2.1† and
we shall see some examples from [O’Sullivan, Goerzen and Stewart 2008, Ch. 8]

†Hackage: https://hackage.haskell.org/package/regex-posix and
https://hackage.haskell.org/package/regex-tdfa, respectively.

5/8

https://hackage.haskell.org/package/regex-posix
https://hackage.haskell.org/package/regex-tdfa


Other Libraries

From the description of regex-base 0.94.0.2:†

This package does not provide the ability to do regular expression matching. Instead,
it provides the type classes that constitute the abstract API that is implemented by
regex-* backends such as:

▶ regex-posix
▶ regex-parsec
▶ regex-dfa
▶ regex-tdfa
▶ regex-pcre

†https://hackage.haskell.org/package/regex-base.
6/8

https://hackage.haskell.org/package/regex-base


Other Libraries

From the description of regex-posix 0.96.0.1:†

Benchmarking shows the default regex library on many platforms is very inefficient.
You might increase performace by an order of magnitude by obtaining libpcre and
regex-pcre or libtre and regex-tre. If you do not need the captured substrings
then you can also get great performance from regex-dfa. If you do need the capture
substrings then you may be able to use regex-parsec to improve performance.

†https://hackage.haskell.org/package/regex-posix-0.96.0.1/docs/Text-Regex-Posix.html.
7/8

https://hackage.haskell.org/package/regex-posix-0.96.0.1/docs/Text-Regex-Posix.html


References
Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory,
Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 2).
O’Sullivan, B., Goerzen, J. and Stewart, D. (2008). Real World Haskell. O’Really Media, Inc. (cit.
on p. 5).

References 8/8


	References

