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Preliminaries
Conventions
▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,

sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman (1979) 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2,… }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫𝐴.
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Introduction

▶ There are various libraries for handling regular expressions in Haskell.

▶ POSIX (Portable Operating System Interface) is a family of standards specified for
maintaining compatibility between operating systems.
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Notation for Regular Expressions

POSIX Textbook
𝑎𝑏 𝑎𝑏
𝑎|𝑏 𝑎 + 𝑏
𝑎∗ 𝑎∗
(𝑎) (𝑎)
𝑎+ 𝑎𝑎∗
𝑎? 𝑎 + 𝜀
[𝑎𝑏𝑐] 𝑎 + 𝑏 + 𝑐
. Any symbol
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Demo
Examples
We shall use GHC 9.6.2, the libraries regex-posix 0.96.0.1 and regex-tdfa 1.3.2.1† and
we shall see some examples from [O’Sullivan, Goerzen and Stewart 2008, Ch. 8]

†Hackage: https://hackage.haskell.org/package/regex-posix and
https://hackage.haskell.org/package/regex-tdfa, respectively.
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Other Libraries

From the description of regex-base 0.94.0.2:†

This package does not provide the ability to do regular expression matching. Instead,
it provides the type classes that constitute the abstract API that is implemented by
regex-* backends such as:

▶ regex-posix
▶ regex-parsec
▶ regex-dfa
▶ regex-tdfa
▶ regex-pcre

†https://hackage.haskell.org/package/regex-base.
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Other Libraries

From the description of regex-posix 0.96.0.1:†

Benchmarking shows the default regex library on many platforms is very inefficient.
You might increase performace by an order of magnitude by obtaining libpcre and
regex-pcre or libtre and regex-tre. If you do not need the captured substrings
then you can also get great performance from regex-dfa. If you do need the capture
substrings then you may be able to use regex-parsec to improve performance.

†https://hackage.haskell.org/package/regex-posix-0.96.0.1/docs/Text-Regex-Posix.html.
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