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Features/Advantages

▶ Purely functional (verification)

▶ Statically typed (type-safe and maintainability)

▶ Lazy evaluation (unbounded data structures and performance)

▶ Garbage collected memory (no need for pointers)
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Functions
Example (function application)
Factorial function.

fac n = product [1..n]

Note: We use ‘f n’ instead of ‘f(n)’ for function application.
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Types
Question
Is the fac function correct?

Example

import Numeric.Natural

fac :: Natural -> Natural
fac n = product [1..n]

By writing down the type of the function we could avoid run-time errors.

Other implementations for the factorial
Google for ‘The evolution of a Haskell programmer’.
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Curryfication
Example
Whiteboard.
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Lists
Inductive definition
Haskell has built-in syntax for lists, where a list is either:

▶ the empty list, written [], or
▶ a first element x and a list xs, written (x : xs).
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Lists
Example (pattern matching on lists)

length :: [Int] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Question
What about the length function on lists of Booleans?

length :: [Bool] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Question
Can we avoid the boilerplate lstlisting? Yes!
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Parametric Polymorphism
Example (basic functions from the @Data.List@ library)
(i) Returns the length of a finite list as an Int.

length :: [a] -> Int

(ii) Append two lists.
(++) :: [a] -> [a] -> [a]

(iii) Extract the first element of a list, which must be non-empty.
head :: [a] -> a
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Parametric Polymorphism
Example (basic functions from the @Data.List@ library)
(i) Extract the last element of a list, which must be finite and non-empty.

last :: [a] -> a

(ii) Extract the elements after the head of a list, which must be non-empty.
tail :: [a] -> [a]

(iii) Return all the elements of a list except the last one. The list must be non-empty.
init :: [a] -> [a]

(iv) Test whether a list is empty.
null :: [a] -> Bool
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Lazy Evaluation
Description
Nothing is evaluated until necessary.
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Lazy Evaluation
Example
Infinite (unbounded) list.

ones :: [Int]
ones = 1 : ones

The expression take n applied to a list xs returns the prefix of xs of length n, or xs itself if
n > length xs.

take :: Int -> [a] -> [a]

Question
Which is the value of take 5 ones? [1,1,1,1,1]
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Lazy Evaluation
Example (also in other programming languages)
Non-terminating function.

foo :: Int -> Bool
foo n = foo (n + 1)

Boolean disjunction.
bar :: Int -> Bool
bar n = True || foo n

Question
Which is the value of bar 10? True
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Lazy Evaluation
Example
(From stackoverflow.com/questions/30688558/)

dh :: Int -> Int -> (Int, Int)
dh d q = (2^d, q^d)

a, b :: (Int, Int)
a = dh 2 (fst b)
b = dh 3 (fst a)

Question
Which is the value of a? (4,64)
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Higher-Order Functions
Description
Functions are first-class citizen.
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Higher-Order Functions
Example
The expression map f xs is the list obtained by applying f to each element of xs:

map f [x1, x2, ..., xn] = [f x1, f x2, ..., f xn]

The function map can defined by
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs

Question
Which is the value of map (+1) [1..5]? [2,3,4,5,6]
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Higher-Order Functions
Example
The function foldr applied to a binary operator, a starting value (typically the right-identity of
the operator), and a list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn] = x1 `f` (x2 `f` ... (xn `f` z)...)

The function foldr can be defined by
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)

Question
Which is the value of foldr (+) 0 [1,2,3]? 6
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Algebraic Data Types
Example

data Bool = True | False

Functions by pattern matching

(||) :: Bool -> Bool -> Bool
True || _ = True
False || x = x
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Algebraic Data Types
Example (recursive data type)

data Nat = Zero | Succ Nat

Structural recursive function by pattern matching

(+) :: Nat -> Nat -> Nat
Zero + n = n
(Succ m) + n = Succ (m + n)
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Algebraic Data Types
Example (polymorphic data type)

data List a = Nil | Cons a (List a)
data [] a = [] | a : [a]
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The Real World

▶ Haskell in Industry (www.haskell.org/haskellwiki/Haskell_in_industry).
▶ Applications (www.haskell.org/haskellwiki/Libraries_and_tools).

The Real World 44/55

www.haskell.org/haskellwiki/Haskell_in_industry
www.haskell.org/haskellwiki/Libraries_and_tools


Using Haskell

▶ Homepage: www.haskell.org
▶ GHC: The Glorious Glasgow Haskell Compilation System
▶ GHCi: Interactive interpreter
▶ Toolchain: www.haskell.org/downloads

▶ For installing GHC we suggest to use ghcup.
▶ For installing libraries and compiling programs you can use stack or

cabal-install.
▶ Hackage: The Haskell package repository
▶ Community: www.haskell.org/community/
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Some Books
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Some Books

▶ Bird, R. [2015]. Thinking Functionally with Haskell. Cambridge University Press.
▶ Hutton, G. [2007] [2016]. Programming in Haskell. 2nd ed. Cambridge University Press.
▶ Lipovača, M. [2011]. Learn You a Haskell for Great Good! No Starch Press.
▶ O’Sullivan, B., Goerzen, J. and Stewart, D. [2008]. Real World Haskell. O’Really Media,

Inc.
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Bonus Slides: Testing with QuickCheck
A paper
Claessen, Koen and Hughes, John [2000]. QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. ICFP’00. DOI: https://doi.org/10.1145/357766.351266.

Most Influential ICFP Paper Award 2010†

‘The techniques described in the paper have spawned a significant body of follow-on
work in test case generation. They have also been adapted to other languages …’

†See www.sigplan.org/Awards/ICFP/.
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Bonus Slides: Testing with QuickCheck
An open source library
QuickCheck on Hackage.†

Commercialisation
QuviQ (www.quviq.com/).

†http://hackage.haskell.org/package/QuickCheck.
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Bonus Slides: Testing with QuickCheck
Adaptations
QuickCheck has been ported to various languages (Wikipedia 2024-02-02).

C C# C++ Chicken Clojure
Common Lisp Coq D Elm Elixir
Erlang F# Factor Go Io
Java JavaScript Julia Logtalk Lua
Mathematica Objective-C OCaml Perl Prolog
PHP Pony Python R Racket
Ruby Rust Scala Scheme Smalltalk
Standard ML Swift TypeScript VB.NET Vhiley
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Bonus Slides: Testing with QuickCheck
False positive
The program works properly but the test pointed out a fail:

▶ There is a bug elsewhere.
▶ There is an error in the specification.

False negative
There is a bug in the program but the test passed.
Recall Dijkstra’s 1969 famous quote:

‘Testing shows the presence, not the absence of bugs.’
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Bonus Slides: Testing with QuickCheck
Example
See demo.

Bonus Slides: QuickCheck 55/55


	Features
	Function and Types
	Curryfication
	Lists
	Parametric Polymorphism
	Lazy Evaluation
	Higher-Order Functions
	Algebraic Data Types
	The Real World
	Using Haskell
	Some Books
	Bonus Slides: QuickCheck

