
CM0081 Formal Languages and Automata
Introduction to Haskell

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1

1/55

Features/Advantages

▶ Purely functional (verification)

▶ Statically typed (type-safe and maintainability)

▶ Lazy evaluation (unbounded data structures and performance)

▶ Garbage collected memory (no need for pointers)

Features 2/55

Functions
Example (function application)
Factorial function.

fac n = product [1..n]

Note: We use ‘f n’ instead of ‘f(n)’ for function application.

Function and Types 3/55

Types
Question
Is the fac function correct?

Example

import Numeric.Natural

fac :: Natural -> Natural
fac n = product [1..n]

By writing down the type of the function we could avoid run-time errors.

Other implementations for the factorial
Google for ‘The evolution of a Haskell programmer’.

Function and Types 4/55

Types
Question
Is the fac function correct?

Example

import Numeric.Natural

fac :: Natural -> Natural
fac n = product [1..n]

By writing down the type of the function we could avoid run-time errors.

Other implementations for the factorial
Google for ‘The evolution of a Haskell programmer’.

Function and Types 5/55

Types
Question
Is the fac function correct?

Example

import Numeric.Natural

fac :: Natural -> Natural
fac n = product [1..n]

By writing down the type of the function we could avoid run-time errors.

Other implementations for the factorial
Google for ‘The evolution of a Haskell programmer’.

Function and Types 6/55

Curryfication
Example
Whiteboard.

Curryfication 7/55

Lists
Inductive definition
Haskell has built-in syntax for lists, where a list is either:

▶ the empty list, written [], or
▶ a first element x and a list xs, written (x : xs).

Lists 8/55

Lists
Example (pattern matching on lists)

length :: [Int] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Question
What about the length function on lists of Booleans?

length :: [Bool] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Question
Can we avoid the boilerplate lstlisting? Yes!

Lists 9/55

Lists
Example (pattern matching on lists)

length :: [Int] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Question
What about the length function on lists of Booleans?

length :: [Bool] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Question
Can we avoid the boilerplate lstlisting? Yes!

Lists 10/55

Lists
Example (pattern matching on lists)

length :: [Int] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Question
What about the length function on lists of Booleans?

length :: [Bool] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Question
Can we avoid the boilerplate lstlisting? Yes!

Lists 11/55

Lists
Example (pattern matching on lists)

length :: [Int] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Question
What about the length function on lists of Booleans?

length :: [Bool] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Question
Can we avoid the boilerplate lstlisting? Yes!

Lists 12/55

Parametric Polymorphism
Example (basic functions from the @Data.List@ library)
(i) Returns the length of a finite list as an Int.

length :: [a] -> Int

(ii) Append two lists.
(++) :: [a] -> [a] -> [a]

(iii) Extract the first element of a list, which must be non-empty.
head :: [a] -> a

Parametric Polymorphism 13/55

Parametric Polymorphism
Example (basic functions from the @Data.List@ library)
(i) Extract the last element of a list, which must be finite and non-empty.

last :: [a] -> a

(ii) Extract the elements after the head of a list, which must be non-empty.
tail :: [a] -> [a]

(iii) Return all the elements of a list except the last one. The list must be non-empty.
init :: [a] -> [a]

(iv) Test whether a list is empty.
null :: [a] -> Bool

Parametric Polymorphism 14/55

Lazy Evaluation
Description
Nothing is evaluated until necessary.

Lazy Evaluation 15/55

Lazy Evaluation
Example
Infinite (unbounded) list.

ones :: [Int]
ones = 1 : ones

The expression take n applied to a list xs returns the prefix of xs of length n, or xs itself if
n > length xs.

take :: Int -> [a] -> [a]

Question
Which is the value of take 5 ones? [1,1,1,1,1]

Lazy Evaluation 16/55

Lazy Evaluation
Example
Infinite (unbounded) list.

ones :: [Int]
ones = 1 : ones

The expression take n applied to a list xs returns the prefix of xs of length n, or xs itself if
n > length xs.

take :: Int -> [a] -> [a]

Question
Which is the value of take 5 ones? [1,1,1,1,1]

Lazy Evaluation 17/55

Lazy Evaluation
Example
Infinite (unbounded) list.

ones :: [Int]
ones = 1 : ones

The expression take n applied to a list xs returns the prefix of xs of length n, or xs itself if
n > length xs.

take :: Int -> [a] -> [a]

Question
Which is the value of take 5 ones?

[1,1,1,1,1]

Lazy Evaluation 18/55

Lazy Evaluation
Example
Infinite (unbounded) list.

ones :: [Int]
ones = 1 : ones

The expression take n applied to a list xs returns the prefix of xs of length n, or xs itself if
n > length xs.

take :: Int -> [a] -> [a]

Question
Which is the value of take 5 ones? [1,1,1,1,1]

Lazy Evaluation 19/55

Lazy Evaluation
Example (also in other programming languages)
Non-terminating function.

foo :: Int -> Bool
foo n = foo (n + 1)

Boolean disjunction.
bar :: Int -> Bool
bar n = True || foo n

Question
Which is the value of bar 10? True

Lazy Evaluation 20/55

Lazy Evaluation
Example (also in other programming languages)
Non-terminating function.

foo :: Int -> Bool
foo n = foo (n + 1)

Boolean disjunction.
bar :: Int -> Bool
bar n = True || foo n

Question
Which is the value of bar 10?

True

Lazy Evaluation 21/55

Lazy Evaluation
Example (also in other programming languages)
Non-terminating function.

foo :: Int -> Bool
foo n = foo (n + 1)

Boolean disjunction.
bar :: Int -> Bool
bar n = True || foo n

Question
Which is the value of bar 10? True

Lazy Evaluation 22/55

Lazy Evaluation
Example
(From stackoverflow.com/questions/30688558/)

dh :: Int -> Int -> (Int, Int)
dh d q = (2^d, q^d)

a, b :: (Int, Int)
a = dh 2 (fst b)
b = dh 3 (fst a)

Question
Which is the value of a? (4,64)

Lazy Evaluation 23/55

stackoverflow.com/questions/30688558/

Lazy Evaluation
Example
(From stackoverflow.com/questions/30688558/)

dh :: Int -> Int -> (Int, Int)
dh d q = (2^d, q^d)

a, b :: (Int, Int)
a = dh 2 (fst b)
b = dh 3 (fst a)

Question
Which is the value of a?

(4,64)

Lazy Evaluation 24/55

stackoverflow.com/questions/30688558/

Lazy Evaluation
Example
(From stackoverflow.com/questions/30688558/)

dh :: Int -> Int -> (Int, Int)
dh d q = (2^d, q^d)

a, b :: (Int, Int)
a = dh 2 (fst b)
b = dh 3 (fst a)

Question
Which is the value of a? (4,64)

Lazy Evaluation 25/55

stackoverflow.com/questions/30688558/

Higher-Order Functions
Description
Functions are first-class citizen.

Higher-Order Functions 26/55

Higher-Order Functions
Example
The expression map f xs is the list obtained by applying f to each element of xs:

map f [x1, x2, ..., xn] = [f x1, f x2, ..., f xn]

The function map can defined by
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs

Question
Which is the value of map (+1) [1..5]? [2,3,4,5,6]

Higher-Order Functions 27/55

Higher-Order Functions
Example
The expression map f xs is the list obtained by applying f to each element of xs:

map f [x1, x2, ..., xn] = [f x1, f x2, ..., f xn]

The function map can defined by
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs

Question
Which is the value of map (+1) [1..5]? [2,3,4,5,6]

Higher-Order Functions 28/55

Higher-Order Functions
Example
The expression map f xs is the list obtained by applying f to each element of xs:

map f [x1, x2, ..., xn] = [f x1, f x2, ..., f xn]

The function map can defined by
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs

Question
Which is the value of map (+1) [1..5]?

[2,3,4,5,6]

Higher-Order Functions 29/55

Higher-Order Functions
Example
The expression map f xs is the list obtained by applying f to each element of xs:

map f [x1, x2, ..., xn] = [f x1, f x2, ..., f xn]

The function map can defined by
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs

Question
Which is the value of map (+1) [1..5]? [2,3,4,5,6]

Higher-Order Functions 30/55

Higher-Order Functions
Example
The function foldr applied to a binary operator, a starting value (typically the right-identity of
the operator), and a list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn] = x1 `f` (x2 `f` ... (xn `f` z)...)

The function foldr can be defined by
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)

Question
Which is the value of foldr (+) 0 [1,2,3]? 6

Higher-Order Functions 31/55

Higher-Order Functions
Example
The function foldr applied to a binary operator, a starting value (typically the right-identity of
the operator), and a list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn] = x1 `f` (x2 `f` ... (xn `f` z)...)

The function foldr can be defined by
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)

Question
Which is the value of foldr (+) 0 [1,2,3]? 6

Higher-Order Functions 32/55

Higher-Order Functions
Example
The function foldr applied to a binary operator, a starting value (typically the right-identity of
the operator), and a list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn] = x1 `f` (x2 `f` ... (xn `f` z)...)

The function foldr can be defined by
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)

Question
Which is the value of foldr (+) 0 [1,2,3]?

6

Higher-Order Functions 33/55

Higher-Order Functions
Example
The function foldr applied to a binary operator, a starting value (typically the right-identity of
the operator), and a list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn] = x1 `f` (x2 `f` ... (xn `f` z)...)

The function foldr can be defined by
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)

Question
Which is the value of foldr (+) 0 [1,2,3]? 6

Higher-Order Functions 34/55

Higher-Order Functions
Example
The function foldl applied to a binary operator, a starting value (typically the left-identity of
the operator), and a list, reduces the list using the binary operator, from left to right:

foldl f z [x1, x2, ..., xn] = (...((z `f` x1) `f` x2) `f`...) `f` xn

The function foldl can be defined by
foldl f z [] = z
foldl f z (x : xs) = let z' = z `f` x

in foldl f z' xs

Question
Which is the value of foldl (+) 0 [1,2,3]? 6

Higher-Order Functions 35/55

Higher-Order Functions
Example
The function foldl applied to a binary operator, a starting value (typically the left-identity of
the operator), and a list, reduces the list using the binary operator, from left to right:

foldl f z [x1, x2, ..., xn] = (...((z `f` x1) `f` x2) `f`...) `f` xn

The function foldl can be defined by
foldl f z [] = z
foldl f z (x : xs) = let z' = z `f` x

in foldl f z' xs

Question
Which is the value of foldl (+) 0 [1,2,3]? 6

Higher-Order Functions 36/55

Higher-Order Functions
Example
The function foldl applied to a binary operator, a starting value (typically the left-identity of
the operator), and a list, reduces the list using the binary operator, from left to right:

foldl f z [x1, x2, ..., xn] = (...((z `f` x1) `f` x2) `f`...) `f` xn

The function foldl can be defined by
foldl f z [] = z
foldl f z (x : xs) = let z' = z `f` x

in foldl f z' xs

Question
Which is the value of foldl (+) 0 [1,2,3]?

6

Higher-Order Functions 37/55

Higher-Order Functions
Example
The function foldl applied to a binary operator, a starting value (typically the left-identity of
the operator), and a list, reduces the list using the binary operator, from left to right:

foldl f z [x1, x2, ..., xn] = (...((z `f` x1) `f` x2) `f`...) `f` xn

The function foldl can be defined by
foldl f z [] = z
foldl f z (x : xs) = let z' = z `f` x

in foldl f z' xs

Question
Which is the value of foldl (+) 0 [1,2,3]? 6

Higher-Order Functions 38/55

Algebraic Data Types
Example

data Bool = True | False

Functions by pattern matching

(||) :: Bool -> Bool -> Bool
True || _ = True
False || x = x

Algebraic Data Types 39/55

Algebraic Data Types
Example

data Bool = True | False

Functions by pattern matching

(||) :: Bool -> Bool -> Bool
True || _ = True
False || x = x

Algebraic Data Types 40/55

Algebraic Data Types
Example (recursive data type)

data Nat = Zero | Succ Nat

Structural recursive function by pattern matching

(+) :: Nat -> Nat -> Nat
Zero + n = n
(Succ m) + n = Succ (m + n)

Algebraic Data Types 41/55

Algebraic Data Types
Example (recursive data type)

data Nat = Zero | Succ Nat

Structural recursive function by pattern matching

(+) :: Nat -> Nat -> Nat
Zero + n = n
(Succ m) + n = Succ (m + n)

Algebraic Data Types 42/55

Algebraic Data Types
Example (polymorphic data type)

data List a = Nil | Cons a (List a)
data [] a = [] | a : [a]

Algebraic Data Types 43/55

The Real World

▶ Haskell in Industry (www.haskell.org/haskellwiki/Haskell_in_industry).
▶ Applications (www.haskell.org/haskellwiki/Libraries_and_tools).

The Real World 44/55

www.haskell.org/haskellwiki/Haskell_in_industry
www.haskell.org/haskellwiki/Libraries_and_tools

Using Haskell

▶ Homepage: www.haskell.org
▶ GHC: The Glorious Glasgow Haskell Compilation System
▶ GHCi: Interactive interpreter
▶ Toolchain: www.haskell.org/downloads

▶ For installing GHC we suggest to use ghcup.
▶ For installing libraries and compiling programs you can use stack or

cabal-install.
▶ Hackage: The Haskell package repository
▶ Community: www.haskell.org/community/

Using Haskell 45/55

www.haskell.org
www.haskell.org/downloads
www.haskell.org/community/

Some Books

Some Books 46/55

Some Books

▶ Bird, R. [2015]. Thinking Functionally with Haskell. Cambridge University Press.
▶ Hutton, G. [2007] [2016]. Programming in Haskell. 2nd ed. Cambridge University Press.
▶ Lipovača, M. [2011]. Learn You a Haskell for Great Good! No Starch Press.
▶ O’Sullivan, B., Goerzen, J. and Stewart, D. [2008]. Real World Haskell. O’Really Media,

Inc.

Some Books 47/55

Bonus Slides: Testing with QuickCheck
A paper
Claessen, Koen and Hughes, John [2000]. QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. ICFP’00. DOI: https://doi.org/10.1145/357766.351266.

Most Influential ICFP Paper Award 2010†

‘The techniques described in the paper have spawned a significant body of follow-on
work in test case generation. They have also been adapted to other languages …’

†See www.sigplan.org/Awards/ICFP/.
Bonus Slides: QuickCheck 48/55

https://doi.org/10.1145/357766.351266
www.sigplan.org/Awards/ICFP/

Bonus Slides: Testing with QuickCheck
A paper
Claessen, Koen and Hughes, John [2000]. QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. ICFP’00. DOI: https://doi.org/10.1145/357766.351266.

Most Influential ICFP Paper Award 2010†

‘The techniques described in the paper have spawned a significant body of follow-on
work in test case generation. They have also been adapted to other languages …’

†See www.sigplan.org/Awards/ICFP/.
Bonus Slides: QuickCheck 49/55

https://doi.org/10.1145/357766.351266
www.sigplan.org/Awards/ICFP/

Bonus Slides: Testing with QuickCheck
An open source library
QuickCheck on Hackage.†

Commercialisation
QuviQ (www.quviq.com/).

†http://hackage.haskell.org/package/QuickCheck.
Bonus Slides: QuickCheck 50/55

www.quviq.com/
http://hackage.haskell.org/package/QuickCheck

Bonus Slides: Testing with QuickCheck
An open source library
QuickCheck on Hackage.†

Commercialisation
QuviQ (www.quviq.com/).

†http://hackage.haskell.org/package/QuickCheck.
Bonus Slides: QuickCheck 51/55

www.quviq.com/
http://hackage.haskell.org/package/QuickCheck

Bonus Slides: Testing with QuickCheck
Adaptations
QuickCheck has been ported to various languages (Wikipedia 2024-02-02).

C C# C++ Chicken Clojure
Common Lisp Coq D Elm Elixir
Erlang F# Factor Go Io
Java JavaScript Julia Logtalk Lua
Mathematica Objective-C OCaml Perl Prolog
PHP Pony Python R Racket
Ruby Rust Scala Scheme Smalltalk
Standard ML Swift TypeScript VB.NET Vhiley

Bonus Slides: QuickCheck 52/55

Bonus Slides: Testing with QuickCheck
False positive
The program works properly but the test pointed out a fail:

▶ There is a bug elsewhere.
▶ There is an error in the specification.

False negative
There is a bug in the program but the test passed.
Recall Dijkstra’s 1969 famous quote:

‘Testing shows the presence, not the absence of bugs.’

Bonus Slides: QuickCheck 53/55

Bonus Slides: Testing with QuickCheck
False positive
The program works properly but the test pointed out a fail:

▶ There is a bug elsewhere.
▶ There is an error in the specification.

False negative
There is a bug in the program but the test passed.
Recall Dijkstra’s 1969 famous quote:

‘Testing shows the presence, not the absence of bugs.’

Bonus Slides: QuickCheck 54/55

Bonus Slides: Testing with QuickCheck
Example
See demo.

Bonus Slides: QuickCheck 55/55

	Features
	Function and Types
	Curryfication
	Lists
	Parametric Polymorphism
	Lazy Evaluation
	Higher-Order Functions
	Algebraic Data Types
	The Real World
	Using Haskell
	Some Books
	Bonus Slides: QuickCheck

