
CM0081 Formal Languages and Automata
§ 3.2 Finite Automata and Regular Expressions

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1

1/43



Preliminaries
Conventions

▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman (1979) 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2, … }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫𝐴.
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Introduction
Equivalences

DFA NFA

𝜀-NFA RegEx
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From Finite Automata to Regular Expressions
Theorem 3.4
If 𝐿 = L(𝐷) for some DFA 𝐷, then there is a regular expression 𝑅 such that 𝐿 = L(𝑅).
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From Finite Automata to Regular Expressions
Proof (by induction on the number of states of the automaton)

▶ Let the states of 𝐷 be {1, 2, … , 𝑛} with 1 the start state.

▶ 𝑅𝑘
𝑖𝑗: Regular expression describing the set of labels of all paths in 𝐷 from state 𝑖 to state 𝑗

such that the path has no intermediate node whose number is greater than 𝑘.†

†Figure from Hopcroft, Motwani and Ullman [(1979) 2007, Fig. 3.2].
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From Finite Automata to Regular Expressions
Proof (continuation)
Basis step: Proof for 𝑘 = 0 (i.e. no intermediate states) and 𝑖 ≠ 𝑗

▶ No transition from state 𝑖 to state 𝑗

𝑖 𝑗 𝑅0
𝑖𝑗 = ∅

▶ One transition from state 𝑖 to state 𝑗

𝑖 𝑗𝑎 𝑅0
𝑖𝑗 = 𝒂

▶ Various transitions from state 𝑖 to state 𝑗

𝑖 𝑗
𝑎1
…

𝑎𝑛

𝑅0
𝑖𝑗 = 𝒂1 + ⋯ + 𝒂𝒏
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From Finite Automata to Regular Expressions
Proof (continuation)
Basis step: Proof for 𝑘 = 0 (i.e. no intermediate states) and 𝑖 = 𝑗

▶ No loops

𝑖 𝑅0
𝑖𝑖 = 𝜀

▶ One loop

𝑖𝑎 𝑅0
𝑖𝑖 = 𝜀 + 𝒂

▶ Various loops

𝑖𝑎1

…

𝑎𝑛 𝑅0
𝑖𝑖 = 𝜀 + 𝒂1 + ⋯ + 𝒂𝒏

Question
Why do not to define 𝑅0

𝑖𝑖 = 𝒂∗ ?
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From Finite Automata to Regular Expressions
Proof (continuation)
Inductive step: Proof for 𝑘
Inductive hypothesis 𝑅𝑘−1

𝑖𝑗 : Path from state 𝑖 to state 𝑗 that goes through no state higher
than 𝑘 − 1.

▶ The path does not go through state 𝑘 at all

𝑖 𝑘 𝑗
𝑅𝑘

𝑖𝑗 = 𝑅𝑘−1
𝑖𝑗
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From Finite Automata to Regular Expressions
Proof (continuation)
Inductive step: Proof for 𝑘
Inductive hypothesis 𝑅𝑘−1

𝑖𝑗 : Path from state 𝑖 to state 𝑗 that goes through no state higher
than 𝑘 − 1.

▶ The path goes through state 𝑘 at least once

𝑖 𝑘 𝑘 𝑘 𝑗

𝑅𝑘
𝑖𝑗 = 𝑅𝑘−1

𝑖𝑘 (𝑅𝑘−1
𝑘𝑘 )∗𝑅𝑘−1

𝑘𝑗

From the previous cases:

𝑅𝑘
𝑖𝑗 = 𝑅𝑘−1

𝑖𝑗 + 𝑅𝑘−1
𝑖𝑘 (𝑅𝑘−1

𝑘𝑘 )∗𝑅𝑘−1
𝑘𝑗 .
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From Finite Automata to Regular Expressions
Proof (continuation)
Given that the states of 𝐷 are {1, 2, … , 𝑛} with 1 the start state, then

L(𝐷) = L(𝑅𝑛
1𝑓1

+ ⋯ + 𝑅𝑛
1𝑓𝑚

) with 𝑓𝑖 ∈ 𝐹.
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From Finite Automata to Regular Expressions
Example
To convert the DFA 𝐷 to a regular expression.

1start 2

1
0 0, 1

L(𝐷) = { 𝑤 ∈ {0, 1}∗ ∣ 𝑤 has at least one 0 }.

(continued on next slide)
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From Finite Automata to Regular Expressions
Example (continuation)

▶ 𝑅0
𝑖𝑗

1start 2

1
0 0, 1

𝑅0
𝑖𝑗 Regexp

𝑅0
11 𝜀 + 𝟏

𝑅0
12 𝟎

𝑅0
21 ∅

𝑅0
22 𝜀 + 𝟎 + 𝟏

(continued on next slide)

From Finite Automata to Regular Expressions 23/43



From Finite Automata to Regular Expressions
Example (continuation)

▶ 𝑅1
𝑖𝑗 = 𝑅0

𝑖𝑗 + 𝑅0
𝑖1(𝑅0

11)∗𝑅0
1𝑗

𝑅0
𝑖𝑗 Regexp

𝑅0
11 𝜀 + 𝟏

𝑅0
12 𝟎

𝑅0
21 ∅

𝑅0
22 𝜀 + 𝟎 + 𝟏

𝑅1
𝑖𝑗 Regexp

𝑅1
11 (𝜀 + 𝟏) + (𝜀 + 𝟏)(𝜀 + 𝟏)∗(𝜀 + 𝟏)

𝑅1
12 𝟎 + (𝜀 + 𝟏)(𝜀 + 𝟏)∗𝟎

𝑅1
21 ∅ + ∅(𝜀 + 𝟏)∗(𝜀 + 𝟏)

𝑅1
22 𝜀 + 𝟎 + 𝟏 + ∅(𝜀 + 𝟏)∗𝟎

(continued on next slide)
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From Finite Automata to Regular Expressions
Example (continuation)

▶ Some simplifications for regular expressions
Let 𝑀 and 𝑁 be regular expression variables.

(𝜀 + 𝑀)∗ = 𝑀∗

(𝜀 + 𝑀)𝑀∗ = 𝑀∗

𝑀 + 𝑁 ∗𝑀 = 𝑁 ∗𝑀
𝑀∅ = ∅𝑀 = ∅ (∅ is the annihilator for concatenation)

𝑀 + ∅ = ∅ + 𝑀 = 𝑀 (∅ is the identity for union)

(continued on next slide)
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From Finite Automata to Regular Expressions
Example (continuation)

▶ 𝑅1
𝑖𝑗 = 𝑅0

𝑖𝑗 + 𝑅0
𝑖1(𝑅0

11)∗𝑅0
1𝑗

𝑅1
𝑖𝑗 Regexp Simplified

𝑅1
11 (𝜀 + 𝟏) + (𝜀 + 𝟏)(𝜀 + 𝟏)∗(𝜀 + 𝟏) 𝟏∗

𝑅1
12 𝟎 + (𝜀 + 𝟏)(𝜀 + 𝟏)∗𝟎 𝟏∗𝟎

𝑅1
21 ∅ + ∅(𝜀 + 𝟏)∗(𝜀 + 𝟏) ∅

𝑅1
22 𝜀 + 𝟎 + 𝟏 + ∅(𝜀 + 𝟏)∗𝟎 𝜀 + 𝟎 + 𝟏

(continued on next slide)
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From Finite Automata to Regular Expressions
Example (continuation)

▶ 𝑅2
𝑖𝑗 = 𝑅1

𝑖𝑗 + 𝑅1
𝑖2(𝑅1

22)∗𝑅1
2𝑗

𝑅1
𝑖𝑗 Regexp

𝑅1
11 𝟏∗

𝑅1
12 𝟏∗𝟎

𝑅1
21 ∅

𝑅1
22 𝜀 + 𝟎 + 𝟏

𝑅2
𝑖𝑗 Regexp

𝑅2
11 𝟏∗ + 𝟏∗𝟎(𝜀 + 𝟎 + 𝟏)∗∅

𝑅2
12 𝟏∗𝟎 + 𝟏∗𝟎(𝜀 + 𝟎 + 𝟏)∗(𝜀 + 𝟎 + 𝟏)

𝑅2
21 ∅ + (𝜀 + 𝟎 + 𝟏)(𝜀 + 𝟎 + 𝟏)∗∅

𝑅2
22 𝜀 + 𝟎 + 𝟏 + (𝜀 + 𝟎 + 𝟏)(𝜀 + 𝟎 + 𝟏)∗(𝜀 + 𝟎 + 𝟏)

(continued on next slide)
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From Finite Automata to Regular Expressions
Example (continuation)

▶ 𝑅2
𝑖𝑗 = 𝑅1

𝑖𝑗 + 𝑅1
𝑖2(𝑅1

22)∗𝑅1
2𝑗

𝑅2
𝑖𝑗 Regexp Simplified

𝑅2
11 𝟏∗ + 𝟏∗𝟎(𝜀 + 𝟎 + 𝟏)∗∅ 𝟏∗

𝑅2
12 𝟏∗𝟎 + 𝟏∗𝟎(𝜀 + 𝟎 + 𝟏)∗(𝜀 + 𝟎 + 𝟏) 𝟏∗𝟎(𝟎 + 𝟏)∗

𝑅2
21 ∅ + (𝜀 + 𝟎 + 𝟏)(𝜀 + 𝟎 + 𝟏)∗∅ ∅

𝑅2
22 𝜀 + 𝟎 + 𝟏 + (𝜀 + 𝟎 + 𝟏)(𝜀 + 𝟎 + 𝟏)∗(𝜀 + 𝟎 + 𝟏) (𝟎 + 𝟏)∗

(continued on next slide)
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From Finite Automata to Regular Expressions
Example (continuation)
The regular expression equivalent to the automaton 𝐷 is

𝑅2
12 = 𝟏∗𝟎(𝟎 + 𝟏)∗.
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From Regular Expressions to Finite Automata
Theorem 3.7
Every language defined by a regular expression is also defined by a finite automaton.

Proof (by induction)
For each regular expression 𝐸 we construct an 𝜀-NFA 𝐴 such that L(𝐸) = L(𝐴) with:
(i) exactly one accepting state,
(ii) no arcs into the initial state and
(iii) no arcs out of the accepting state.
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From Regular Expressions to Finite Automata
Proof (continuation)
Basis step: Automata for (a) 𝐸 = 𝜀, (b) 𝐸 = ∅ and (c) 𝐸 = 𝒂.†

From regex’s to ε-NFA’s

Theorem 3.7: For every regex R we can con-

struct and ε-NFA A, s.t. L(A) = L(R).

Proof: By structural induction:

Basis: Automata for ε, ∅, and a.

ε

a

(a)

(b)

(c)

73

†Figure from Hopcroft, Motwani and Ullman [(1979) 2007, Fig. 3.16].
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From Regular Expressions to Finite Automata
Proof (continuation)
Inductive step: Automaton for 𝐸 = 𝑅 + 𝑆.†���� FINITE AUTOMATA AND REGULAR EXPRESSIONS ���

(a)

(b)

(c)

R

S

R S

R

ε ε

εε

ε

ε

ε

ε ε

Figure ����� The inductive step in the regular	expression	to	�	NFA construction

automaton of Fig� �����c�� That automaton allows us to go either�

�a� Directly from the start state to the accepting state along a path
labeled �� That path lets us accept �� which is in L�R�� no matter
what expression R is�

�b� To the start state of the automaton for R� through that automaton
one or more times� and then to the accepting state� This set of paths
allows us to accept strings in L�R�� L�R�L�R�� L�R�L�R�L�R�� and
so on� thus covering all strings in L�R�� except perhaps �� which was
covered by the direct arc to the accepting state mentioned in ��a��

�� The expression is �R� for some smaller expression R� The automaton
for R also serves as the automaton for �R�� since the parentheses do not
change the language dened by the expression�

It is a simple observation that the constructed automata satisfy the three con	
ditions given in the inductive hypothesis � one accepting state� with no arcs
into the initial state or out of the accepting state� �

†Figure from Hopcroft, Motwani and Ullman [(1979) 2007, Fig. 3.17].
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From Regular Expressions to Finite Automata
Proof (continuation)
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automaton of Fig� �����c�� That automaton allows us to go either�

�a� Directly from the start state to the accepting state along a path
labeled �� That path lets us accept �� which is in L�R�� no matter
what expression R is�

�b� To the start state of the automaton for R� through that automaton
one or more times� and then to the accepting state� This set of paths
allows us to accept strings in L�R�� L�R�L�R�� L�R�L�R�L�R�� and
so on� thus covering all strings in L�R�� except perhaps �� which was
covered by the direct arc to the accepting state mentioned in ��a��

�� The expression is �R� for some smaller expression R� The automaton
for R also serves as the automaton for �R�� since the parentheses do not
change the language dened by the expression�

It is a simple observation that the constructed automata satisfy the three con	
ditions given in the inductive hypothesis � one accepting state� with no arcs
into the initial state or out of the accepting state� �

†Figure from Hopcroft, Motwani and Ullman [(1979) 2007, Fig. 3.17].
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From Regular Expressions to Finite Automata
Example
Convert the regular expression 𝐸 = (𝟎 + 𝟏)∗𝟏(𝟎 + 𝟏) to an 𝜀-NFA 𝐴 such that L(𝐸) = L(𝐴).

1. 𝜀-NFA for 𝟎 + 𝟏:

start
𝜀

𝜀

0
𝜀

1
𝜀

(continued on next slide)
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From Regular Expressions to Finite Automata
Example
Convert the regular expression 𝐸 = (𝟎 + 𝟏)∗𝟏(𝟎 + 𝟏) to an 𝜀-NFA 𝐴 such that L(𝐸) = L(𝐴).

1. 𝜀-NFA for 𝟎 + 𝟏:

start
𝜀

𝜀

0
𝜀

1
𝜀

(continued on next slide)
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From Regular Expressions to Finite Automata
Example (continuation)

2. 𝜀-NFA for (𝟎 + 𝟏)∗:

start 𝜀
𝜀

𝜀

0
𝜀

1
𝜀

𝜀

𝜀

𝜀

(continued on next slide)
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From Regular Expressions to Finite Automata
Example (continuation)

3. 𝜀-NFA for (𝟎 + 𝟏)∗1:

start 𝜀
𝜀

𝜀

0
𝜀

1
𝜀

𝜀

𝜀

𝜀

𝜀 1
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From Regular Expressions to Finite Automata
Example (continuation)

4. 𝜀-NFA for (𝟎 + 𝟏)∗1(𝟎 + 𝟏):

start 𝜀
𝜀

𝜀

0
𝜀

1
𝜀

𝜀

𝜀

𝜀

𝜀 1 𝜀
𝜀

𝜀

0
𝜀

1
𝜀
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From Regular Expressions to Finite Automata
Exercise 3.2.7
There are some simplifications to the constructions of Theorem 3.7, where we converted a
regular expression to an 𝜀-NFA. Here are three:

1) For the union operator, instead of creating new start and accepting states, merge the two
start states into one state with all the transitions of both start states. Likewise, merge the
two accepting states, having all transitions to either go to the merged state instead.

2) For the concatenation operator, merge the accepting state of the first automaton with the
start state of the second.

3) For the closure operator, simply add 𝜀-transitions from the accepting state to the start
state and vice-versa.

(continued on next slide)
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From Regular Expressions to Finite Automata
Exercise 3.2.7 (continuation)
Each of these simplifications, by themselves, still yield a correct construction; that is, the resulting
𝜀-NFA for any regular expression accepts the language of the expression. Which subsets of
changes 1), 2) and 3) may be made to the construction together, while still yielding a correct
automaton for every regular expression?
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